Skip to main content
Log in

XAFS Investigation of Nanoparticle Formation in 64Zn+ Ion Implanted and Thermo Oxidized Si

  • 26th INTERNATIONAL SYMPOSIUM “NANOSTRUCTURES: PHYSICS AND TECHNOLOGY”. NANOSTRUCTURE CHARACTERIZATION
  • Published:
Semiconductors Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The single crystal CZ n-Si(100) substrates with electron concentration no = 5 × 1016 cm−3 were implanted by 64Zn+ ions with dose of 5 × 1016 cm−2 and energy of 50 keV. During implantation the ion beam current density was less than 0.5 μA/cm2 to avoid the substrate magnetically heating. After implantation, the plates were subjected to isochronous for one hour heat treatment in oxygen atmosphere at temperatures from 400 up to 1000oC with a step of 100oC. Zn K-edge EXAFS spectra were measured in fluorescent mode. Si(111) channel-cut monochromator was used for energy scanning; energy resolution ΔE/E = 2 × 10–4. According to Zn K-edge EXAFS data, all Zn implanted in Si at 900oC is fully oxidized: an absolute maximum of EXAFS Fourier transform at R ~ 1.6 Å corresponds to Zn–O distance. Based on XANES data, we suggest an interaction between implanted Zn atoms and Si support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles (Am. Sci. Publ., Los Angeles, 2002).

    Google Scholar 

  2. S.-P. Chang and K.-J. Chen, J. Nanomater. 2012, 602398 (2012).

    Google Scholar 

  3. C. Jiang, X. Sun, G. Lo, et al., Appl. Phys. Lett. 90, 263501 (2007).

    Article  ADS  Google Scholar 

  4. C. Li, Y. Yang, X. Sun, et al., Nanotechnology 18, 135604 (2007).

    Article  ADS  Google Scholar 

  5. S. Chu, M. Olmedo, Zh. Yang, et al., Appl. Phys. Lett. 93, 181106 (2008).

    Article  ADS  Google Scholar 

  6. G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).

    Article  Google Scholar 

  7. Ch. Li, G. Beirne, G. Kamita, et al., J. Appl. Phys. 116, 114501 (2014).

    Article  ADS  Google Scholar 

  8. A. Sirelkhatim, S. Mahmud, A. Seeni, et al., Nano- Micro Lett. 7, 2129 (2015).

    Article  Google Scholar 

  9. S. Inbasekaran, R. Senthil, G. Ramamurthy, et al., Int. J. Innov. Res. Sci. Eng. Technol. 3, 8601 (2014).

    Google Scholar 

  10. T. Tietze, P. Audehm, Y.-C. Chen, et al., Sci. Rep. 5, 8871 (2015).

    Article  Google Scholar 

  11. I. Muntele, P. Thevenard, C. Muntele, et al., Mater. Res. Symp. Proc. 829, B.2.21 (2005).

  12. C. Liu, H. Zhao, Y. Shen, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 326, 23 (2014).

    Google Scholar 

  13. V. Privezentsev, N. Tabachkova, and Yu. Lebedinskii, AIP Conf. Proc. 1583, 109 (2014).

    Article  ADS  Google Scholar 

  14. A. Chernyshov, A. Veligzhanin, Y. Zubavichus, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 603, 95 (2009).

    Google Scholar 

  15. N. Trofimova, A. Veligzhanin, V. Murzin, et al., Nanotechnol. Russ. 8, 396 (2013).

    Article  Google Scholar 

  16. M. Newille, J. Synchrotr. Rad. 8, 322 (2001).

    Google Scholar 

  17. B. Ravel, J. Synchrotr. Rad. 12, 537 (2005).

    Google Scholar 

  18. C. Chouillet, F. Villain, M. Kermarec, et al., J. Phys. Chem. B 107, 3565 (2003).

    Article  Google Scholar 

  19. L. Wang, X. Lu, X. Wei, et al., J. Anal. At. Spectrom. 27, 1667 (2012).

    Article  Google Scholar 

  20. H. Schulz and K. H. Thiemann, Solid State Commun. 32, 783 (1979).

    Article  ADS  Google Scholar 

  21. M. A. Simonov, P. A. Sandomirskii, Y. K. Egorov-Tismenko, and N. V. Belov, Sov. Phys. Dokl. 22, 622 (1977).

    ADS  Google Scholar 

  22. N. Morimoto, S. Akimoto, Y. Syono, Y. Nakajima, and Y. Matsui, Acta Crystallogr., B 31, 1041 (1975).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported partially by Program of FASO of Russia, State Project 14 (Theme 40.3, section no. 0066-2014-0025 and Theme 40.2, section no. 0066-2014-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Privezentsev.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramov, E.V., Privezentsev, V.V. XAFS Investigation of Nanoparticle Formation in 64Zn+ Ion Implanted and Thermo Oxidized Si. Semiconductors 52, 2070–2072 (2018). https://doi.org/10.1134/S1063782618160121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618160121

Navigation