Skip to main content
Log in

On Derivation of Dresselhaus Spin-Splitting Hamiltonians in One-Dimensional Electron Systems

  • SPIN-RELATED PHENOMENA IN NANOSTRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductor structures of materials without inversion center (e.g. zinc-blende AIIIBV) possess the zero-field conduction band spin-splitting (Dresselhaus term), which is linear and cubic in wavevector k, that arises from cubic in k splitting in bulk material. At low carrier concentration the cubic term is usually negligible. However, if we will be interested in the following dimensional quantization (in 2D plane) and the character width in this direction is comparable with the width of 2D-structure, then we have to take into account k3-terms as well (even at low concentrations), that after quantization leads to comparable contribution that arises from k-linear term. We propose the general procedure for derivation of Dresselhaus spin-splitting Hamiltonian applicable for any curvilinear 1D-structures. The simple examples for the cases of quantum wire (QWr) and quantum ring (QR) defined in usual [001]-grown 2D-structure are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. I. Dyakonov and V. I. Perel, Sov. Phys. Solid State 13, 3023 (1972).

    Google Scholar 

  2. M. I. Dyakonov and V. Yu. Kachorovskii, Sov. Phys. Semicond. 20, 110 (1986).

    Google Scholar 

  3. E. L. Ivchenko and S. D. Ganichev, in Spin Physics in Semiconductors, Ed. by M. I. Dyakonov (Berlin, Springer, 2008), p. 245.

    Google Scholar 

  4. N. S. Averkiev and I. A. Kokurin, J. Magn. Magn. Mater. 440, 157 (2017).

    Article  ADS  Google Scholar 

  5. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  6. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  7. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  ADS  Google Scholar 

  8. U. Rössler and J. Keinz, Solid State Commun. 121, 313 (2002).

    Article  ADS  Google Scholar 

  9. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena (Berlin, Springer, 1997).

    Book  MATH  Google Scholar 

  10. I. A. Kokurin, Physica E (Amsterdam) 74, 264 (2015).

  11. J. S. Sheng and K. Chang, Phys. Rev. B 74, 235315 (2006).

    Article  ADS  Google Scholar 

  12. I. A. Kokurin, Semiconductors 52, 535 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kokurin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokurin, I.A. On Derivation of Dresselhaus Spin-Splitting Hamiltonians in One-Dimensional Electron Systems. Semiconductors 52, 1868–1870 (2018). https://doi.org/10.1134/S1063782618140142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618140142

Navigation