Skip to main content
Log in

Quantization of the Electromagnetic Field in Three-Dimensional Photonic Structures on the Basis of the Scattering Matrix Formalism (S Quantization)

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A technique for quantization of the electromagnetic field in photonic nanostructures with three-dimensional modulation of the dielectric constant is developed on the basis of the scattering matrix formalism (S quantization in the three-dimensional case). Quantization is based on equating the eigenvalues of the scattering matrix to unity, which is equivalent to equating each other the sets of Fourier expansions for the fields of the waves incident on the structure and propagating away from the structure. The spatial distribution of electromagnetic fields of the modes in a photonic nanostructure is calculated on the basis of the R and T matrices describing the reflection and transmission of the Fourier components by the structure. To calculate the reflection and transmission coefficients of individual real-space and Fourier-space components, the structure is divided into parallel layers within which the dielectric constant varies as a function of two-dimensional coordinates. Using the Fourier transform, Maxwell’s equations are written in the form of a matrix connecting the Fourier components of the electric field at the boundaries of neighboring layers. Based on the calculated reflection and transmission vectors for all polarizations and Fourier components, the scattering matrix for the entire structure is formed and quantization is carried out by equating the eigenvalues of the scattering matrix to unity. The developed method makes it possible to obtain the spatial profiles of eigenmodes without solving a system of nonlinear integro-differential equations and significantly reduces the computational resources required for calculating the probability of spontaneous emission in three-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Loudon, Quantum Theory of Light (Oxford Univ. Press, Oxford, 2000).

    MATH  Google Scholar 

  2. V. L. Ginzburg, Sov. Phys. Usp. 26, 713 (1983).

    Article  ADS  Google Scholar 

  3. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  4. V. P. Bykov, Sov. Phys. JETP 35, 269 (1972).

    ADS  Google Scholar 

  5. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  6. S. Brand, R. A. Abram, and M. A. Kaliteevski, Phys. Rev. B 75, 035102 (2007).

    Article  ADS  Google Scholar 

  7. F. J. García-de-Abajo, Rev. Mod. Phys. 79, 1267 (2007).

    Article  ADS  Google Scholar 

  8. C. Symonds, G. Lheureux J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, Nano Lett. 13, 3179 (2013).

    Article  ADS  Google Scholar 

  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  10. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1982).

  11. F. de Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, Phys. Rev. A 43, 2480 (1991).

    Article  ADS  Google Scholar 

  12. M. A. Kaliteevskii, V. A. Mazlin, K. A. Ivanov, and A. R. Gubaydullin, Opt. Spectrosc. 119, 832 (2015).

    Article  ADS  Google Scholar 

  13. M. S. Tomas and Z. Lenac, Phys. Rev. A 56, 4197 (1997).

    Article  ADS  Google Scholar 

  14. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).

    Article  ADS  Google Scholar 

  15. M. A. Kaliteevskii, A. R. Gubaydullin, K. A. Ivanov, and V. A. Mazlin, Opt. Spectrosc. 121, 410 (2016).

    Article  ADS  Google Scholar 

  16. J. B. Pendry, J. Mod. Opt. 41, 209 (1994).

    Article  ADS  Google Scholar 

  17. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964; Nauka, Moscow, 1973).

  18. K. A. Ivanov, V. V. Nikolaev, A. R. Gubaydullin, and M. A. Kaliteevski, Opt. Spectrosc. 123, 615 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Russian Science Foundation for financial support (project no. 16-12-10503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Ivanov or M. A. Kaliteevski.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, K.A., Gubaydullin, A.R. & Kaliteevski, M.A. Quantization of the Electromagnetic Field in Three-Dimensional Photonic Structures on the Basis of the Scattering Matrix Formalism (S Quantization). Semiconductors 52, 1145–1149 (2018). https://doi.org/10.1134/S106378261809004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261809004X

Keywords

Navigation