Skip to main content
Log in

Effect of Dislocation-related Deep Levels in Heteroepitaxial InGaAs/GaAs and GaAsSb/GaAs pin Structures on the Relaxation time of Nonequilibrium Carriers

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of an experimental study of the capacitance–voltage (CV) characteristics and deep-level transient spectroscopy (DLTS) spectra of p+p0in0 homostructures based on undoped dislocationfree GaAs layers and InGaAs/GaAs and GaAsSb/GaAs heterostructures with homogeneous networks of misfit dislocations, all grown by liquid-phase epitaxy (LPE), are presented. Deep-level acceptor defects identified as HL2 and HL5 are found in the epitaxial p0 and n0 layers of the GaAs-based structure. The electron and hole dislocation-related deep levels, designated as, respectively, ED1 and HD3, are detected in InGaAs/GaAs and GaAsSb/GaAs heterostructures. The following hole trap parameters: thermal activation energies (E t ), capture cross sections (σ p ), and concentrations (N t ) are calculated from the Arrhenius dependences to be E t = 845 meV, σ p = 1.33 × 10–12 cm2, N t = 3.80 × 1014 cm–3 for InGaAs/GaAs and E t = 848 meV, σ p = 2.73 × 10–12 cm2, N t = 2.40 × 1014 cm–3 for GaAsSb/GaAs heterostructures. The concentration relaxation times of nonequilibrium carriers are estimated for the case in which dislocation-related deep acceptor traps are involved in this process. These are 2 × 10–10 s and 1.5 × 10–10 s for, respectively, the InGaAs/GaAs and GaAsSb/GaAs heterostructures and 1.6 × 10–6 s for the GaAs homostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. I. Alferov, V. I. Korol’kov, V. G. Nikitin, M. N. Stepanova, and D. N. Tret’yakov, Sov. Tech. Phys. Lett. 2, 76 (1976).

    Google Scholar 

  2. F. Yu. Soldatenkov, V. G. Danil’chenko, and V. I. Korol’kov, Semiconductors 41, 211 (2007).

    Article  ADS  Google Scholar 

  3. V. G. Danil’chenko, V. I. Korol’kov, and F. Yu. Soldatenkov, Semiconductors 43, 1055 (2009).

    Article  ADS  Google Scholar 

  4. V. A. Kozlov, F. Yu. Soldatenkov, V. G. Danilchenko, V. I. Korolkov, and I. L. Shulpina, in Proceedings of the 25th Advanced Semiconductor Manufacturing Conference, Saratoga Springs, USA, May 19–21, 2014, p. 139.

    Book  Google Scholar 

  5. M. M. Sobolev, F. Yu. Soldatenkov, and V. A. Kozlov, Semiconductors 50, 924 (2016).

    Article  ADS  Google Scholar 

  6. M. M. Sobolev, P. R. Brunkov, S. G. Konnikov, M. N. Stepanova, V. G. Nikitin, V. P. Ulin, A. Sh. Dolbaya, T. D. Kamushadze, and R. M. Maisuradze, Sov. Phys. Semicond. 25, 637 (1989).

    Google Scholar 

  7. P. N. Brunkov, S. Gaibullaev, S. G. Konnikov, V. G. Nikitin, M. I. Papentsev, and M. M. Sobolev, Sov. Phys. Semicond. 25, 205 (1991).

    Google Scholar 

  8. G. M. Martin, A. Mitonneau, and A. Mircea, Electron. Lett. 13, 666 (1977).

    Article  Google Scholar 

  9. A. Mitonneau, G. M. Martin, and A. Mircea, Electron. Lett. 13, 191 (1977).

    Article  Google Scholar 

  10. V. A. Kaluchov and S. I. Chikichev, Phys. Status Solidi 88, K59 (1985).

    Article  ADS  Google Scholar 

  11. A. Z. Li, H. K. Kim, J. C. Jeong, D. Wong, T. E. Schlesinger, and A. G. Milnes, J. Appl. Phys. 64, 3497 (1988).

    Article  ADS  Google Scholar 

  12. Kohjib Yamada and Kazumi Wada, Inst. Phys. Conf. Ser. 106, 153 (1989).

    Google Scholar 

  13. B. H. Yang, Z. G. Wang, H. J. He, and L. Y. Lin, J. Cryst. Growth 103, 371 (1990).

    Article  ADS  Google Scholar 

  14. O. Yastrubchak, T. Wosinski, A. Makosa, T. Figielski, S. Porowski, I. Grzegory, R. Czernecki, and P. Perlin, Eur. Phys. J. Appl. Phys. 27, 201 (2004).

    Article  ADS  Google Scholar 

  15. T. Wosiński, A. Makosa, and J. Raczyńska, Acta Phys. Polon. A 87, 369 (1995).

    Article  Google Scholar 

  16. V. G. Danil’chenko, V. I. Korol’kov, S. I. Ponomarev, and F. Yu. Soldatenkov, Semiconductors 45, 515 (2011).

    Article  ADS  Google Scholar 

  17. I. L. Shul’pina, V. V. Ratnikov, V. A. Kozlov, F. Yu. Soldatenkov, and V. E. Voitovich, Tech. Phys. 59, 1566 (2014).

    Article  Google Scholar 

  18. C. O. Thomas, D. Kahng, and R. C. Manz, J. Electrochem. Soc. 109, 1055 (1962).

    Article  Google Scholar 

  19. E. S. Yang, J. Appl. Phys. 45, 3801 (1974).

    Article  ADS  Google Scholar 

  20. J. P. Donnelly and A. G. Milnes, IEEE Trans. Electron Dev. 14, 63 (1967).

    Article  ADS  Google Scholar 

  21. M. M. Sobolev, A. V. Gittsovich, M. I. Papentsev, I. V. Kochnev, and B. S. Yavich, Sov. Phys. Semicond. 26, 985 (1992).

    Google Scholar 

  22. D. V. Davydov, A. L. Zakgeim, F. M. Snegov, M. M. Sobolev, A. E. Chernyakov, A. S. Usikov, and N. M. Shmidt, Tech. Phys. Lett. 33, 143 (2007).

    Article  ADS  Google Scholar 

  23. V. Bonch-Bruevich and S. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977), p. 672 [in Russian].

    Google Scholar 

  24. H. F. Mataré, Defect Electronics in Semiconductors (Wiley-Interscience, New York, London, Sydney, Toronto, 1971).

    Google Scholar 

  25. B. Lax and S. F. Neustadter, J. Appl. Phys. 25, 1148 (1954).

    Article  ADS  Google Scholar 

  26. B. R. Gossik, J. Appl. Phys. 27, 905 (1956).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sobolev.

Additional information

Original Russian Text © M.M. Sobolev, F.Yu. Soldatenkov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 2, pp. 177–183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, M.M., Soldatenkov, F.Y. Effect of Dislocation-related Deep Levels in Heteroepitaxial InGaAs/GaAs and GaAsSb/GaAs pin Structures on the Relaxation time of Nonequilibrium Carriers. Semiconductors 52, 165–171 (2018). https://doi.org/10.1134/S1063782618020173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618020173

Navigation