Skip to main content
Log in

Formation and study of p–i–n structures based on two-phase hydrogenated silicon with a germanium layer in the i-type region

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Four pairs of p–i–n structures based on polymorphous Si:H (pm-Si:H) are fabricated by the method of plasma-enhanced chemical vapor deposition. The structures in each pair are grown on the same substrate so that one of them does not contain Ge in the i-type layer while the other structure contains Ge deposited by molecular-beam epitaxy as a layer with a thickness of 10 nm. The pair differ from one another in terms of the substrate temperature during Ge deposition; these temperatures are 300, 350, 400, and 450°C. The data of electron microscopy show that the structures formed at 300°C contain Ge nanocrystals (nc-Ge) nucleated at nanocrystalline inclusions at the pm-Si:H surface. The nc-Ge concentration increases as the temperature is raised. The study of the current–voltage characteristics show that the presence of Ge in the i-type layer decreases the density of the short-circuit current in p–i–n structures when they are used as solar cells, whereas these layers give rise to an increase in current at a reverse bias under illumination. The obtained results are consistent with known data for structures with Ge clusters in Si; according to these data, Ge clusters increase the coefficient of light absorption but they also increase the rate of charge-carrier recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Afanas’ev, E. I. Terukov, and A. A. Sherchenkov, Thin Film Solar Elements Based on Silicon, 2nd ed. (SPbGETU LETI, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. N. G. Galkin, K. N. Galkin, I. M. Chernev, R. Fajgar, T. H. Stuchlikova, Z. Remes, and J. Stuchlik, Phys. Status Solidi C 10, 1712 (2013).

    Article  ADS  Google Scholar 

  3. N. G. Galkin, K. N. Galkin, I. M. Chernev, R. Fajgar, T. H. Stuchlikova, J. Stuchlik, and Z. Remes, JJAP Conf. Proc. 3, 011104 (2015).

    Google Scholar 

  4. G. K. Krivyakin, V. A. Volodin, S. A. Kochubei, G. N. Kamaev, A. Purkrt, Z. Remes, R. Fajgar, T. H. Stuchliková, and J. Stuchlik, Semiconductors 50, 935 (2016).

    Article  ADS  Google Scholar 

  5. D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 34, 292 (1997).

    Google Scholar 

  6. A. V. Emelyanov, A. G. Kazanskii, P. A. Forsh, D. M. Zhigunov, M. V. Khenkin, N. N. Petrova, A. V. Kukin, E. I. Terukov, and P. K. Kashkarov, J. Nanoelectron, Optoelectron. 10, 649 (2015).

    Google Scholar 

  7. C. R. Wronski, J. M. Pearce, J. Deng, V. Vlahos, and R. W. Collins, Thin Solid Films 451–452, 470 (2004).

    Article  ADS  Google Scholar 

  8. A. G. Kazanskii, E. I. Terukov, P. A. Forsh, and J. P. Kleider, Semiconductors 44, 494 (2010).

    Article  ADS  Google Scholar 

  9. R. Butté, S. Vignoli, M. Meaudre, R. Meaudre, O. Marty, L. Saviot, and P. Rocai Cabarrocas, J. Non-Cryst. Solids 266, 263 (2000).

    Article  ADS  Google Scholar 

  10. A. I. Yakimov, A. V. Dvurechenskii, Yu. Yu. Proskuryakov, A. I. Nikiforov, O. P. Pchelyakov, S. A. Teys, and A. K. Gutakovskii, Appl. Phys. Lett. 75, 1413 (1999).

    Article  ADS  Google Scholar 

  11. A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, and K. Nakajima, Appl. Phys. Lett. 84, 2802 (2004).

    Article  ADS  Google Scholar 

  12. Z. Liu, T. Zhou, L. Li, Y. Zuo, C. He, C. Li, C. Xue, B. Cheng, and Q. Wang, Appl. Phys. Lett. 103, 082101 (2013).

    Article  ADS  Google Scholar 

  13. C. Li, J. Ni, X. Sun, X. Wang, Z. Li, H. Cai, J. Li, and J. Zhang, J. Phys. D: Appl. Phys. 50, 045108 (2017).

    Article  ADS  Google Scholar 

  14. V. A. Volodin and D. I. Koshelev, J. Raman Spectrosc. 44, 1760 (2013).

    Article  ADS  Google Scholar 

  15. R. Tsu, J. Gonzalez-Hernandes, S. S. Chao, S. C. Lee, and K. Tanaka, Appl. Phys. Lett. 40, 534 (1982).

    Article  ADS  Google Scholar 

  16. V. Pailard and P. Puech, J. Appl. Phys. 86, 1921 (1999).

    Article  ADS  Google Scholar 

  17. V. A. Volodin and V. A. Sachkov, J. Exp. Theor. Phys. 116, 87 (2013).

    Article  ADS  Google Scholar 

  18. E. Bustarret, M. A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).

    Article  ADS  Google Scholar 

  19. M. D. Efremov, V. V. Bolotov, V. A. Volodin, L. I. Fedina, and E. A. Lipatnikov, J. Phys.: Condens. Matter 8, 273 (1996).

    ADS  Google Scholar 

  20. A. V. Dvurechenskii, V. A. Volodin, G. K. Krivyakin, A. A. Shklyaev, S. A. Kochubei, I. G. Neizvestny, and J. Stuchlik, Optoelectron., Instrum. Data Process. 52, 496 (2016).

    Article  ADS  Google Scholar 

  21. A. A. Shklyaev, K. N. Romanyuk, and S. S. Kosolobov, Surf. Sci. 625, 50 (2014).

    Article  ADS  Google Scholar 

  22. A. A. Shklyaev, M. Shibata, and M. Ichikawa, Phys. Rev. B 62, 1540 (2000).

    Article  ADS  Google Scholar 

  23. T. Tayagaki, Y. Hoshi, and N. Usami, Sci. Rep. 3, 2703 (2013).

    Article  ADS  Google Scholar 

  24. A. N. Yablonskiy, N. A. Baidakova, A. V. Novikov, D. N. Lobanov, and M. V. Shaleev, Semiconductors 49, 1410 (2015).

    Article  ADS  Google Scholar 

  25. S. Cosentino, E. G. Barbagiovanni, I. Crupi, M. Miritello, G. Nicotra, C. Spinella, D. Pacifici, S. Mirabella, and A. Terrasi, Sol. Energy Mater. Solar Cells 135, 22 (2015).

    Article  Google Scholar 

  26. M. S. Smagin, Datchiki Sist. 5, 43 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Krivyakin.

Additional information

Original Russian Text © G.K. Krivyakin, V.A. Volodin, A.A. Shklyaev, V. Mortet, J. More-Chevalier, P. Ashcheulov, Z. Remes, T.H. Stuchliková, J. Stuchlik, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 10, pp. 1420–1426.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivyakin, G.K., Volodin, V.A., Shklyaev, A.A. et al. Formation and study of p–i–n structures based on two-phase hydrogenated silicon with a germanium layer in the i-type region. Semiconductors 51, 1370–1376 (2017). https://doi.org/10.1134/S1063782617100128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617100128

Navigation