Skip to main content
Log in

High-temperature annealing of macroporous silicon in an inert-gas flow

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Interest in the sintering of macroporous silicon is due to the possibility of purposefully modifying its structure. The annealing of macroporous structures in an atmosphere of Ar, instead of H2, simplifies the requirements to equipment and safety engineering. The sintering of macroporous silicon as result of annealing at T = 1000–1280°C in a horizontal tube purged with high-purity gases: Ar or Ar + 3%H2 is examined. Experiments were conducted with layers having deep cylindrical macropores produced by the electrochemical etching of samples with seed pits on their surface (ordered pores) and without seeds (random pores). The morphology of the porous structure and the changes in this structure upon annealing are studied with electron and optical microscopes. It is shown that, depending on the pore diameter and treatment temperature, the following transformation occurs: the pore surface is smoothed, pores are closed and a surface crust is formed, cylindrical pores are spheroidized and decompose into isolated hollow spheres, and a fine structure and faceting are formed. It is shown that the (111) planes have the minimal surface energy. It is found that the annealing of macroporous silicon in an inert gas leads to strong thermal etching, which is manifested in the fact that the porosity increases or even the porous layer at the sample edge fully disappears. Moreover, an oxide layer appears as a film, beads, or long filaments forming a glass wool upon annealing, especially at low temperatures. These features can be attributed to the presence of trace amounts of an oxidizing agent in the inert gas, which causes the formation of highly volatile SiO and products formed in the reaction involving this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kuzma-Filipek, in Handbook of Porous Silicon, Ed. by L. Canham (Springer International, Switzerland, 2014), p. 599.

  2. T. Yonehara, K. Sakaguchi, and N. Sato, Appl. Phys. Lett. 64, 2108 (1994).

    Article  ADS  Google Scholar 

  3. N. Sato, K. Sakaguchi, K. Yamagata, Y. Fujiyama, and T. Yonehara, J. Electrochem. Soc. 142, 3116 (1995).

    Article  Google Scholar 

  4. R. Brendel, K. Feldrapp, R. Horbert, and R. Auer, Phys. Status Solidi A 197, 497 (2003).

    Article  ADS  Google Scholar 

  5. R. Brendel, Jpn. J. Appl. Phys. 40 (pt. 1), 4431 (2001).

    Article  ADS  Google Scholar 

  6. G. Müller, M. Nerding, N. Ott, H. P. Strunk, and R. Brendel, Phys. Status Solidi A 197, 93 (2003).

    Article  ADS  Google Scholar 

  7. N. Ott, M. Nerding, G. Müller, R. Brendel, and H. P. Strunk, J. Appl. Phys. 95, 497 (2004).

    Article  ADS  Google Scholar 

  8. I. Mizushima, T. Sato, S. Taniguchi, and Y. Tsunashima, Appl. Phys. Lett. 77, 3290 (2000).

    Article  ADS  Google Scholar 

  9. T. Sato, I. Mizushima, S. Taniguchi, K. Takenaka, S. Shimonishi, H. Hayashi, M. Hatano, K. Sugihara, and Y. Tsunashima, Jpn. J. Appl. Phys. 43, 12 (2004).

    Article  ADS  Google Scholar 

  10. D. Hernandez, T. Trifonov, M. Garín, and R. Alcubilla, Appl. Phys. Lett. 102, 172102 (2013).

    Article  ADS  Google Scholar 

  11. M. Garin, D. Hernandez, T. Trifonov, D. Cardador, and R. Alcubilla, in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 2013, p. 933.

    Google Scholar 

  12. M. E. Keeffe, C. C. Umbach, and J. M. Blakely, J. Phys. Chem. Solids 55, 965 (1994).

    Article  ADS  Google Scholar 

  13. H. Kuribayashi, R. Hiruta, R. Shimizu, K. Sudoh, and H. Iwasaki, Jpn. J. Appl. Phys. 43 (4A), L468 (2004).

    Article  ADS  Google Scholar 

  14. V. Depauw, O. Richard, H. Bender, I. Gordon, G. Beaucarne, J. Poortmans, R. Mertens, and J.-P. Celis, Thin Solid Films 516, 6934 (2008).

    Article  ADS  Google Scholar 

  15. V. Depauw, I. Gordon, G. Beaucarne, J. Poortmans, R. Mertens, and J.-P. Celis, J. Appl. Phys. 106, 033516 (2009).

    Article  ADS  Google Scholar 

  16. Y. Kumagai, K. Namba, T. Komeda, and Y. Nishioka, J. Vac. Sci. Technol. A 16, 1775 (1998).

    Article  ADS  Google Scholar 

  17. V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  18. N. E. Preobrazhenskiy, E. V. Astrova, S. I. Pavlov, V. B. Voronkov, A. M. Rumyantsev, and V. V. Zhdanov, Semiconductors 51, 78 (2017).

    Article  ADS  Google Scholar 

  19. T. Suzuki, J. Appl. Phys. 88, 6881 (2000).

    Article  ADS  Google Scholar 

  20. F. W. Smith and G. Ghidini, J. Electrochem. Soc.: Solid State Sci. Technol. 129, 1300 (1982).

    Article  Google Scholar 

  21. N. A. Toropov and V. P. Barzakovskii, High-Temperature Chemistry of Silicate and Other Oxide Systems (Akad. Nauk SSSR, Moscow, Leningrad, 1963; Springer, New York, 1966).

    Google Scholar 

  22. Ya. E. Geguzin and Yu. S. Kaganovskii, Diffusion Processes on Crystal Surface (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  23. D. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, Phys. Rev. Lett. 70, 1643 (1993).

    Article  ADS  Google Scholar 

  24. K. Sudoh, H. Iwasaki, R. Hiruta, H. Kuribayashi, and R. Shimizu, J. Appl. Phys. 105, 083536 (2009).

    Article  ADS  Google Scholar 

  25. Ya. E. Geguzin, Physics of Sintering, 2nd ed. (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  26. T. Müller, D. Dantz, W. V. Ammon, J. Virbulis, and U. Bethers, ECS Trans. 2, 363 (2006).

    Article  Google Scholar 

  27. B. I. Boltaks, Diffusion and Point Defects in Semiconductors (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Astrova.

Additional information

Original Russian Text © E.V. Astrova, N.E. Preobrazhenskiy, S.I. Pavlov, V.B. Voronkov, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 9, pp. 1202–1212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astrova, E.V., Preobrazhenskiy, N.E., Pavlov, S.I. et al. High-temperature annealing of macroporous silicon in an inert-gas flow. Semiconductors 51, 1153–1163 (2017). https://doi.org/10.1134/S1063782617090032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617090032

Navigation