Skip to main content
Log in

Effect of electrolyte temperature on the cathodic deposition of Ge nanowires on in and Sn particles in aqueous solutions

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studying the growth of filamentous Ge structures in aqueous electrolytes at various temperatures using In and Sn nanoparticle arrays as nucleation sites are given. The temperature of Ge cathodic deposition process from aqueous solutions has a significant effect on the layer structure deposited onto the surface. In the presence of metal particles in the molten state, filamentous Ge structures grow due to the cathodic reduction of Ge-containing ions on the electrode surface, followed by dissolution and crystallization in the melt at the substrate interface. The results obtained show the crucial role of liquid metal particles during the electrochemical formation of germanium nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu, and Z. Lin, Angew. Chem. Int. Ed. 55, 7898 (2016).

    Article  Google Scholar 

  2. J.-H. Yun, Y. C. Park, J. Kim, H-J. Lee, W. A. Anderson, and J. Park, Nanoscale Res. Lett. 6, 287 (2011).

    Article  ADS  Google Scholar 

  3. Y. Jung, S. W. Nam, and R. Agarwal, Nano Lett. 11, 1364 (2011).

    Article  ADS  Google Scholar 

  4. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, Nat. Photon 2, 226 (2008).

    Article  Google Scholar 

  5. J. Andzane, N. Petkov, A. I. Livshits, J. J. Boland, J. D. Holmes, and D. Erts, Nano Lett. 9, 1824 (2009).

    Article  ADS  Google Scholar 

  6. V. Schmidt and U. Gösele, Science 316, 698 (2007).

    Article  ADS  Google Scholar 

  7. X. Liang, Y. Kim, D. Gebergziabiher, and J. Stickney, Langmuir 26, 2877 (2010).

    Article  Google Scholar 

  8. M. Wu, G. Vanhoutte, N. R. Brooks, K. Binnemans, and J. Fransaer, Phys. Chem. Chem. Phys. 17, 12080 (2015).

    Article  Google Scholar 

  9. N. Chandrasekharan and S. C. Sevov, J. Electrochem. Soc. 157, 140 (2010).

    Article  Google Scholar 

  10. R. Al-Salman, J. Mallet, M. Molinari, P. Fricoteaux, F. Martineau, M. Troyon, S. Zein El Abedin, and F. Endres, Phys. Chem. Chem. Phys. 10, 6233 (2008).

    Article  Google Scholar 

  11. X. Li, G. Meng, Q. Xu, M. Kong, X. Zhu, Z. Chu, and A.-P. Li, Nano Lett. 11, 1704 (2011).

    Article  ADS  Google Scholar 

  12. A. I. Carim, S. M. Collins, J. M. Foley, and S. Maldonado, J. Am. Chem. Soc. 133, 13292 (2011).

    Article  Google Scholar 

  13. E. Fahrenkrug, J. Biehl, and S. Maldonado, Chem. Mater. 27, 3389 (2015).

    Article  Google Scholar 

  14. S. Usui, T. Yamasaki, and J. Shimoizaka, J. Phys. Chem. 71, 3195 (1967).

    Article  Google Scholar 

  15. J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, and S. Maldonado, Nano Lett. 12, 4617 (2012).

    Article  ADS  Google Scholar 

  16. D. G. Gromov and S. A. Gavrilov, in Thermodynamics— Physical Chemistry of Aqueous Systems, Ed. by J. C. Moreno Piraján (InTech, Rijeka, Croatia, 2011), Chap. 7, p.157.

  17. D. G. Gromov, L. M. Pavlova, A. I. Savitskii, and A. Yu. Trifonov, Phys. Solid State 57, 173 (2015).

    Article  ADS  Google Scholar 

  18. N. K. Mahenderkar, Y.-C. Liu, J. A. Koza, and J. A. Switzer, ACS Nano 8, 9524 (2014).

    Article  Google Scholar 

  19. D. G. Gromov and S. A. Gavrilov, Phys. Solid State 51, 2135 (2009).

    Article  ADS  Google Scholar 

  20. A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskii, Physical Quantities (Energoatomizdat, Moscow, 1991), Chap. 14, p. 330 [in Russian].

    Google Scholar 

  21. L. V. Gurvich, I. V. Veits, and V. A. Medvedev, Thermodynamic Properties of Individual Substance (Nauka, Moscow, 1981; Hemisphere, New York, London, 1989), Vol. 3, Pt. 1, Chap. 23, rus. p.189.

    Google Scholar 

  22. L. V. Gurvich, I. V. Veits, and V. A. Medvedev, Thermodynamic Properties of Individual Substance (Nauka, Moscow, 1979; Hemisphere, New York, London, 1989), Vol. 2, Pt. 1, Chap. 18, rus. p.294.

    Google Scholar 

  23. M. Hansen and K. Anderko, Structure of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgizdat, Moscow, 1962), Vol. 1, rus. p.812.

    Google Scholar 

  24. M. Wautelet, J. P. Dauchot, and M. Hecq, Nanotechnology 11, 6 (2000).

    Article  ADS  Google Scholar 

  25. G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Calphad 36, 52 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gavrilin.

Additional information

Original Russian Text © I.M. Gavrilin, D.G. Gromov, A.A. Dronov, S.V. Dubkov, R.L. Volkov, A.Yu. Trifonov, N.I. Borgardt, S.A. Gavrilov, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 8, pp. 1110–1115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilin, I.M., Gromov, D.G., Dronov, A.A. et al. Effect of electrolyte temperature on the cathodic deposition of Ge nanowires on in and Sn particles in aqueous solutions. Semiconductors 51, 1067–1071 (2017). https://doi.org/10.1134/S1063782617080115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617080115

Navigation