Skip to main content
Log in

Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the silicon powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Mel’nikov, Modern Pyrotechnics (Nauka, Moscow, 2014), Chap. 2 [in Russian].

    Google Scholar 

  2. A. A. Shidlovskii, Principles of Pyrotechnics (Mashinostroenie, Moscow, 1973), Pt. 1, Chap. 2, p. 15 [in Russian].

    Google Scholar 

  3. J. T. Hedger, Propellants, Explos., Pyrotech. 8, 95 (1983).

    Article  Google Scholar 

  4. E. C. Koch and D. Clement, Propellants, Explos., Pyrotech. 3, 205 (2007).

    Article  Google Scholar 

  5. M. F. Gogulya and M. A. Brazhnikov, Combustion and Explosion (Torus, Moscow, 2009), Vol. 2, p. 137 [in Russian].

    Google Scholar 

  6. B. P. Berger, B. Haas, J. Mathieu, T. Vine, and T. T. Griffiths, in Proceedings of the 33rd International Pyrotechnics Seminar, Fort Collins, Colorado, 2006, p. 81.

    Google Scholar 

  7. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. Rev. 82, 909 (1997).

    Article  ADS  Google Scholar 

  8. O. I. Ksenofontova, A. V. Vasin, V. V. Egorov, A. V. Bobyl’, F. Yu. Soldatenkov, E. I. Terukov, V. P. Ulin, N. V. Ulin, and O. I. Kiselev, Tech. Phys. 59, 66 (2014).

    Article  Google Scholar 

  9. D. Kovalev, V. Yi. Timoshenko, N. Kunzner, E. Gross, and F. Koch, Phys. Rev. Lett. 87, 068301 (2001).

    Article  ADS  Google Scholar 

  10. D. Clement, J. Diener, E. Gross, N. Künzner, and V. Yu. Kovalev, Phys. Status Solidi A 202, 1357 (2005).

    Article  ADS  Google Scholar 

  11. S. K. Lazarouk, A. V. Dolbik, P. V. Jaguiro, V. A. Labunov, and V. E. Borisenko, Semiconductors 39, 881 (2005).

    Article  ADS  Google Scholar 

  12. Yu. M. Mikhailov, V. A. Garanin, Yu. V. Ganin, E. K. Goncharov, L. V. Ganina, and G. G. Zegrya, Izv. Akad. Nauk, Ser. Khim., No. 10, 2400 (2010).

    Google Scholar 

  13. S. K. Lazaruk, A. V. Dolbik, V. A. Labunov, and V. E. Borisenko, Semiconductors 41, 1113 (2007).

    Article  ADS  Google Scholar 

  14. E. G. Kishilev and A. Gany, in Proceedings of the 6th Seminar on New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 2013, p. 197.

    Google Scholar 

  15. V. P. Ulin, N. V. Ulin, F. Yu. Soldatenkov, A. V. Semenov, and A. V. Bobyl, Semiconductors 48, 1211 (2014).

    Article  ADS  Google Scholar 

  16. A. Bobyl, S. Konnikov, D. Sakseev, F. Soldatenkov, G. Tereschenko, and V. Ulin, Ind. Eng. Chem. Res. 46, 2263 (2007).

    Article  Google Scholar 

  17. G. K. Kartsev, G. A. Mesyats, D. I. Proskurovskii, V. P. Rotshtein, and G. N. Fursei, Dokl. Akad. Nauk SSSR 192, 309 (1970).

    Google Scholar 

  18. V. A. Morozov, A. A. Lukin, G. G. Savenkov, and I. A. Oskin, in Proceedings of the International Conference on Stability and Control Processes, in Memory of V. I. Zubov, 2015, p. 177.

    Google Scholar 

  19. V. A. Morozov and G. G. Savenkov, Russ. J. Phys. Chem. B 7, 320 (2013).

    Article  Google Scholar 

  20. G. G. Savenkov, V. A. Morozov, A. A. Lukin, V. A. Bragin, and G. V. Semashkin, Tech. Phys. Lett. 40, 256 (2014).

    Article  ADS  Google Scholar 

  21. V. A. Morozov, G. G. Savenkov, V. A. Bragin, V.M. Kats, and A. A. Lukin, Tech. Phys. 57, 706 (2012).

    Article  Google Scholar 

  22. K. P. Stanyukovich, The Physics of Explosion (Nauka, Moscow, 1975), p. 704 [in Russian].

    Google Scholar 

  23. N. I. Kidin and V. B. Librovich, Fiz. Goreniya Vzryva, No. 5, 696 (1974).

    Google Scholar 

  24. L. P. Orlenko, The Physics of Explosion (Fizmatlit, Moscow, 2002), Vol. 1, p. 832 [in Russian].

    Google Scholar 

  25. V. V. Sten’gach, Prikl. Mekh. Tekh. Fiz. 1, 128 (1972).

    Google Scholar 

  26. V. A. Bragin, S. A. Dushenok, V. G. Kulikov, G. G. Savenkov, and G. V. Semashkin, Russ. J. Phys. Chem. B 6, 390 (2012).

    Article  Google Scholar 

  27. S. A. Rashkovskii and G. G. Savenkov, Tech. Phys. 58, 511 (2013).

    Article  Google Scholar 

  28. V. A. Sotskov, Semiconductors 39, 254 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ulin.

Additional information

Original Russian Text © G.G. Zegrya, G.G. Savenkov, V.A. Morozov, A.G. Zegrya, N.V. Ulin, V.P. Ulin, A.A. Lukin, V.A. Bragin, I.A. Oskin, Yu.M. Mikhailov, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 4, pp. 501–506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegrya, G.G., Savenkov, G.G., Morozov, V.A. et al. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments. Semiconductors 51, 477–482 (2017). https://doi.org/10.1134/S106378261704025X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261704025X

Navigation