Skip to main content
Log in

Effect of the chemical composition of Cu–In–Ga–Se layers on the photoconductivity and conversion efficiency of CdS/CIGSe solar cells

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of the [Ga]/[In+Ga] ratio of gallium and indium on the microwave photoconductivity of Cu–In–Ga–Se (CIGSe) films and on the efficiency of solar cells fabricated in accordance with the same technology is investigated. According to the observations of a field-emission scanning electron microscopy (FESEM), the grain size decreases with increasing Ga content. With increasing gallium content in the samples, the photogenerated-electron lifetime and the activation energy of the microwave photoconductivity also decrease. The changes in the activation energy of the through conduction in darkness are less than 20%. Analysis of the obtained data shows that the known effect of the gallium gradient on the efficiency should be associated with modification of the internal structure of grains instead of with their boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Novikov and M. V. Gapanovich, Usp. Fiz. Nauk 85 (2016, in press).

  2. G. F. Novikov, Nauka Tekhnol. Prom-st’ (2016).

    Google Scholar 

  3. A. Luque and S. Hegedus, in Handbook of Photovoltaic Science and Engineering, Ed. by W. N. Shafarman and L. Stolt (Wiley, New York, 2006).

  4. S. Wagner and P. M. Bridenbaugh, J. Cryst. Growth 39, 151 (1997).

    Article  ADS  Google Scholar 

  5. M. Marudachalam, R. Bickmire, H. Hichri, J. M. Schultz, A. Swartzlander, and M. M. Al Jassim, J. Appl. Phys. 82, 2896 (1997).

    Article  ADS  Google Scholar 

  6. J. Bekker, V. Alberts, A. W. R. Leitch, and J. R. Botha, Thin Solid Films 431–432, 116 (2003).

    Article  Google Scholar 

  7. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt. Res. Appl. 19, 84 (2011).

    Article  Google Scholar 

  8. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2010).

    Article  Google Scholar 

  9. K. Otte, L. Makhova, A. Braun, and I. Konovalov, Thin Solid Films 511–512, 613 (2006).

  10. W. Shockley and H. Q. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  ADS  Google Scholar 

  11. R. Noufi, X. Wu, T. Gessert, J. Zhou, C. de Hart, T. Coutts, D. Abbin, M. Contreras, X. Li, R. Dhere, R. Bhattacharya, B. Egaas, K. Ramanathan, and J. Keane, Polycrystalline CdTe and CIGS Thin-Film PV: Research DO, Solar Energy Technologies Program Peer Review (U.S. Department of Energy, Denver, Colorado, 2007), p. 262.

    Google Scholar 

  12. C.-S. Jiang, R. Noufi, K. Ramanathan, J. S. Abu Shama, H. R. Moutinho, and M. M. Al-Jassam, Local Built-in Potentialon Grain Boundary of Cu (In, Ga)Se2 Thin Films (U.S. Department of Energy, Denver, Colorado, 2005), p. 5.

    Google Scholar 

  13. M. Topic, F. Smole, and J. Furlan, J. Appl. Phys. 79, 8537 (1996).

    Article  ADS  Google Scholar 

  14. O. Lundberg, M. Edoff, and L. Stolt, Thin Solid Films 480–481, 520 (2005).

    Article  Google Scholar 

  15. N. E. Gorji, M. D. Perez, U. Reggiani, and L. Sandrolini, IACSIT Int. J. Eng. Technol. 4, 573 (2012).

    Article  Google Scholar 

  16. T. Dullweber, G. Hanna, U. Rau, and H. W. Schock, Solar Energy Mater. Solar Cells 67, 145 (2001).

    Article  Google Scholar 

  17. K. Decock, J. Lauwaert, and M. Burgelman, Energy Proc. 2, 49 (2010).

    Article  Google Scholar 

  18. A. Morales-Acevedo, Energy Proc. 2, 169 (2010).

  19. A. Rockett, Thin Solid Films 361–362, 330 (2000).

    Article  Google Scholar 

  20. J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, and T. J. Anderson, Solid State Electron. 48, 73 (2004).

    Article  ADS  Google Scholar 

  21. R. Knecht, M. S. Hammer, J. Parisi, and I. Riedel, Phys. Status Solidi A 210, 1392 (2013).

    Article  Google Scholar 

  22. M. Burgelman and J. Marlein, in Proceedings of References the 23rd European Photovoltaic Solar Energy Conference (2008), p. 2151.

    Google Scholar 

  23. J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, and T. J. Anderson, Solid State Electron. 48, 73 (2004).

    Article  ADS  Google Scholar 

  24. M. Müller, St. Ribbe, Th. Hempel, Fr. Bertram, Jü. Christen, W. Witte, St. Paetel, and M. Powalla, Thin Solid Films 535, 270n (2013).

    Article  ADS  Google Scholar 

  25. N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, Thin Solid Films 480–481, 286 (2005).

    Article  Google Scholar 

  26. S.-H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998).

    Article  ADS  Google Scholar 

  27. F. Couzinié-Devy, N. Barreau, and J. Kessler, Prog. Photovolt. Res. Appl. 19, 527 (2011).

    Article  Google Scholar 

  28. T. Drobiazg, P. Zabierowski, N. Barreau, L. Arzel, and M. Tomassini, in Proceedings of the IEEE 39th Photovoltaic Specialists Conference, Tampa, FL, 2013) (IEEE, 2013), p. 2572. doi 10.1109/PVSC.2013.6744999

    Google Scholar 

  29. J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, and T. J. Anderson, Solid State Electron. 48, 73 (2004).

    Article  ADS  Google Scholar 

  30. T. Orgis, M. Maiberg, and R. Scheer, J. Appl. Phys. 114, 214506 (2013).

    Article  ADS  Google Scholar 

  31. P. Zabierowski, in Thin Film Solar Cells: Current Status and Future Trends, Ed. by A. Bosio and A. Romeo (Nova Science, New York, 2011), p. 103.

  32. M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman, and J. M. Schultz, Appl. Phys. Lett. 67, 3978 (1995).

    Article  ADS  Google Scholar 

  33. M. M. T. Nakada, and A. Kunioka, Jpn. J. Appl. Phys. 37, L1065 (1998).

    Article  ADS  Google Scholar 

  34. T. Drobiazg, L. Arzel, A. Dönmez, P. Zabierowski, and N. Barreau, Thin Solid Films 582, 47 (2015).

    Article  ADS  Google Scholar 

  35. T. Lavrenko, Th. Ott, and Th. Walter, Thin Solid Films 582, 51 (2015).

    Article  ADS  Google Scholar 

  36. A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Academic, New York, 1983).

    Google Scholar 

  37. K. Teretto and U. Rau, J. Appl. Phys. 103, 094523 (2008).

    Article  ADS  Google Scholar 

  38. M. Gloeckler, J. R. Sites, and W. K. Metzger, J. Appl. Phys. 98, 113704 (2005).

    Article  ADS  Google Scholar 

  39. G. F. Novikov, E. V. Rabenok, M. J. Jeng, and L. B. Chang, J. Renewable Sustainable Energy 4, 011604 (2012).

    Article  Google Scholar 

  40. G. F. Novikov, J. Renewable Sustainable Energy 7, 011204 (2015).

    Article  Google Scholar 

  41. G. F. Novikov, A. A. Marinin, and E. V. Rabenok, Instrum. Exp. Tech. 53, 233 (2010).

    Article  Google Scholar 

  42. G. F. Novikov and K. V. Bocharov, Phys. Express 4, 21 (2014).

    Google Scholar 

  43. W.-T. Tsai, K. Bocharov, E. Rabenok, M.-J. Jeng, G. Novikov, L.-B. Chang, W.-S. Feng, J.-P. Ao, and Y. Sun, in Proceedings of the 23rd Photovoltaic Science and Engineering Conference PVSEC-23, Taiwan, China, 2013, CD-ROM, Abstract 3-P-21.

    Google Scholar 

  44. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, Solar Energy Mater. Solar Cells 101, 154 (2012).

    Article  Google Scholar 

  45. N. Khoshsirat, N. Amzia, M. Yunus, M. N. Hamidon, S. Shafie, and N. Amin, Optik 126, 681 (2015).

    Article  ADS  Google Scholar 

  46. K. V. Bocharov, G. F. Novikov, T. Y. Hsieh, M. V. Gapanovich, and M. J. Jeng, Semiconductors 47, 335 (2013).

    Article  ADS  Google Scholar 

  47. G. Novikov, K. Bocharov, T.-Y. Hsieh, and M.-J. Jeng, in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition 27th EUPVSEC (Frankfurt, Germany, 2012), p. 2851.

    Google Scholar 

  48. K. V. Bocharov, M. V. Gapanovich, E. V. Rabenok, and G. F. Novikov, in Proceedings of the 6th All-Russia Conference on Physicochemical Processes in Condensed State and at Interphase Boundary FAGRAN-2012 (Voronezh, 2012), p. 160.

    Google Scholar 

  49. O. A. Gudaev and V. K. Malinovskii, Phys. Solid State 44, 837 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Original Russian Text © G.F. Novikov, Wei-Tao Tsai, K.V. Bocharov, E.V. Rabenok, Ming-Jer Jeng, Liann-Be Chang, Wu-Shiung Feng, Jian-Ping Ao, Yun Sun, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 10, pp. 1363–1369.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, G.F., Tsai, WT., Bocharov, K.V. et al. Effect of the chemical composition of Cu–In–Ga–Se layers on the photoconductivity and conversion efficiency of CdS/CIGSe solar cells. Semiconductors 50, 1344–1351 (2016). https://doi.org/10.1134/S1063782616100195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616100195

Navigation