Skip to main content
Log in

Efficiency droop in GaN LEDs at high injection levels: Role of hydrogen

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Point defects in GaN and, in particular, their manifestation in the photoluminescence, optical absorption, and recombination current in light-emitting diodes with InGaN/GaN quantum wells are analyzed. The results of this analysis demonstrate that the wide tail of defect states in the band gap of GaN facilitates the trap-assisted tunneling of thermally activated carriers into the quantum well, but simultaneously leads to a decrease in the nonradiative-recombination lifetime and to an efficiency droop as the quasi-Fermi levels intersect the defect states with increasing forward bias. The results reveal the dominant role of hydrogen in the recombination activity of defects with dangling bonds and in the efficiency of GaN-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

    Article  ADS  Google Scholar 

  2. C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).

    Article  ADS  Google Scholar 

  3. L. Balagurov and P. J. Chong, Appl. Phys. Lett. 68, 43 (1996).

    Article  ADS  Google Scholar 

  4. O. Ambacher, W. Reiger, P. Ansmann, H. Angerer, T. D. Moustakas, and M. Stutzmann, Solid State Commun. 97, 365 (1996).

    Article  ADS  Google Scholar 

  5. P. B. Klein and S. C. Binari, J. Phys.: Condens. Matter 15, R1641 (2003).

    ADS  Google Scholar 

  6. P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).

    Article  ADS  Google Scholar 

  7. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).

    Article  ADS  Google Scholar 

  8. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 47, 127 (2013).

    Article  ADS  Google Scholar 

  9. N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 49, 1665 (2015).

    Article  ADS  Google Scholar 

  10. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).

    Article  ADS  Google Scholar 

  11. T. Mukai, K. Takekava, and S. Nakamura, Jpn. J. Appl. Phys. 37, L839 (1996).

    Article  Google Scholar 

  12. Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, D. V. Tarkhin, Y. G. Shreter, E. A. Girnov, S. I. Stepanov, W. N. Wang, P. T. Chang, and P. J. Wang, Proc. SPIE 4996, 113 (2003).

    Article  ADS  Google Scholar 

  13. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605 (2006).

    Article  ADS  Google Scholar 

  14. V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, Jpn. J. Appl. Phys. 52, 08JE14 (2013).

    Article  Google Scholar 

  15. Yu. S. Lelikov, N. I. Bochkareva, R. I. Gorbunov, I. A. Martynov, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 42, 1342 (2008).

    Article  ADS  Google Scholar 

  16. A. A. Efremov, D. V. Tarkhin, N. I. Bochkareva, R. I. Gorbunov, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 40, 375 (2006).

    Article  ADS  Google Scholar 

  17. M. A. Mastro, O. M. Kryliouk, T. J. Anderson, A. Davydov, and A. Shapiro, J. Cryst. Growth 274, 38 (2005).

    Article  ADS  Google Scholar 

  18. V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, A. N. Kovalev, and F. I. Manyakhin, Semiconductors 33, 429 (1999).

    Article  ADS  Google Scholar 

  19. L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003).

    Article  ADS  Google Scholar 

  20. M. Mandurrino, G. Verzellesi, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, M. Meneghini, G. Meneghesso, and E. Zanoni, Phys. Status Solidi A 212, 947 (2015).

    Article  Google Scholar 

  21. N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 48, 1079 (2014).

    Article  Google Scholar 

  22. A. Rose, Concept in Photoconductivity and Allied Problems (Krieger, New York, 1978).

    Google Scholar 

  23. O. Gelhausen, M. R. Phillips, E. M. Goldys, T. Paskova, B. Monemar, M. Strassburg, and A. Hoffmann, Phys. Rev. B 69, 125210 (2004).

    Article  ADS  Google Scholar 

  24. D. Han, K. Wang, and L. Yang, J. Appl. Phys. 80, 2475 (1996).

    Article  ADS  Google Scholar 

  25. D. L. Gricom, J. Appl. Phys. 58, 2524 (1985).

    Article  ADS  Google Scholar 

  26. N. H. Nickel, N. M. Johnson, and C. G. VandeWalle, Phys. Rev. Lett. 72, 3393 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Shreter.

Additional information

Original Russian Text © N.I. Bochkareva, I.A. Sheremet, Yu.G. Shreter, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 10, pp. 1387–1394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkareva, N.I., Sheremet, I.A. & Shreter, Y.G. Efficiency droop in GaN LEDs at high injection levels: Role of hydrogen. Semiconductors 50, 1369–1376 (2016). https://doi.org/10.1134/S1063782616100109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616100109

Navigation