Skip to main content
Log in

Conditions of growth of high-quality relaxed Si1–x Ge x layers with a high Ge content by the vapor-phase decomposition of monogermane on a sublimating Si hot wire

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The conditions of the epitaxial growth of high-quality relaxed Si1–x Ge x layers by the combined method of the sublimation molecular-beam epitaxy and vapor-phase decomposition of monogermane on a hot wire are considered. The combined growth procedure proposed provides a means for growing Si1–x Ge x layers with a thickness of up to 2 µm and larger. At reduced growth temperatures (T S = 325–350°C), the procedure allows the growth of Si1–x Ge x layers with a small surface roughness (rms ≈ 2 nm) and a low density of threading dislocations. The photoluminescence intensity of Si1–x Ge x :Er layers is significantly (more than five times) higher than the photoluminescence intensity of layers produced under standard growth conditions (T S ≈ 500°C) and possess an external quantum efficiency estimated at a level of ~0.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, Semicond. Sci. Technol. 19, 1174 (2004).

    Article  ADS  Google Scholar 

  2. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).

    Article  ADS  Google Scholar 

  3. J. Wang and S. Lee, Sensors 11, 696 (2011).

    Article  Google Scholar 

  4. P. Chaisakul, D. Marris-Morini, M.-S. Rouifed, J. Frigerio, D. Chrastina, J.-R. Coudevylle, X. le Roux, S. Edmond, G. Isella, and L. Vivien, Sci. Technol. Adv. Mater. 15, 014601 (2014).

    Article  Google Scholar 

  5. C. Chen, C. Li, S. Huang, Y. Zheng, H. Lai, and S. Chen, Int. J. Photoenergy 2012, 768605 (2012).

    Google Scholar 

  6. Z. Fang and C. Z. Zhao, ISRN Opt. 2012, 428690 (2012).

    Article  Google Scholar 

  7. S. Cho, J. Park, H. Kim, R. Sinclair, B.-G. Park, and J. S. Harris, Jr., Photon. Nanostruct. Fundam. Appl. 12, 54 (2014).

    Article  ADS  Google Scholar 

  8. M. V. Stepikhova, L. V. Krasil’nikova, Z. F. Krasil’nik, V. G. Shengurov, V. Yu. Chalkov, S. P. Svetlov, D. M. Zhigunov, V. Yu. Timoshenko, O. A. Shalygina, and P. A. Kashkarov, J. Cryst. Growth 288, 65 (2006).

    Article  ADS  Google Scholar 

  9. M. V. Stepikhova, L. V. Krasil’nikova, Z. F. Krasil’nik, V.G. Shengurov, V. Yu. Chalkov, D. M. Zhigunov, O. A. Shalygina, and V. Yu. Timoshenko, Opt. Mater. 28, 893 (2006).

    Article  ADS  Google Scholar 

  10. D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).

    Article  ADS  Google Scholar 

  11. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Akad. Nauk SSSR, Moscow, 1961; Elsevier, Amsterdam, 1963).

    Google Scholar 

  12. V. A. Tolomasov, L. N. Abrosimova, and G. N. Gorshenin, Sov. Phys. Crystallogr. 15, 1076 (1970).

    Google Scholar 

  13. V. P. Kuznetsov, V. A. Tolomasov, and A. V. Tumanova, Sov. Phys. Crystallogr. 24, 588 (1979).

    Google Scholar 

  14. V. G. Shengurov, S. P. Svetlov, V. Yu. Chalkov, D. V. Shengurov, and S. A. Denisov, Semiconductors 40, 183 (2006).

    Article  ADS  Google Scholar 

  15. V. G. Shengurov, S. P. Svetlov, V. Yu. Chalkov, B. A. Andreev, Z. F. Krasilnik, B. Ya. Ber, Yu. N. Drozdov, and A. N. Yablonskii, Semiconductors 36, 625 (2002).

    Article  ADS  Google Scholar 

  16. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, Heidelberg, 2005).

    Book  MATH  Google Scholar 

  17. D. J. Lockwood and J. M. Baribeau, Phys. Rev. B 45, 8565 (1992).

    Article  ADS  Google Scholar 

  18. T. S. Perova, J. Wasyluk, K. Lyutovich, E. Kasper, M. Oehme, K. Rode, and A. Waldron, J. Appl. Phys. 109, 033502 (2011).

    Article  ADS  Google Scholar 

  19. J. Takahashi and T. Makino, J. Appl. Phys. 63, 87 (1988).

    Article  ADS  Google Scholar 

  20. D. J. Olego, H. Baumgart, and C. K. Celler, Appl. Phys. Lett. 52, 483 (1988).

    Article  ADS  Google Scholar 

  21. Kai Shum, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 71, 1074 (1997).

    Article  ADS  Google Scholar 

  22. L. V. Krasilnikova, M. V. Stepikhova, N. A. Baidakova, Yu. N. Drozdov, Z. F. Krasilnik, V. Yu. Chalkov, and V. G. Shengurov, Semiconductors 43, 877 (2009).

    Article  ADS  Google Scholar 

  23. A. Matsuda, J. Non-Cryst. Sol. 59–60, 767 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Matveev.

Additional information

Original Russian Text © V.G. Shengurov, V.Yu. Chalkov, S.A. Denisov, S.A. Matveev, A.V. Nezhdanov, A.I. Mashin, D.O. Filatov, M.V. Stepikhova, Z.F. Krasilnik, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 9, pp. 1270–1275.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shengurov, V.G., Chalkov, V.Y., Denisov, S.A. et al. Conditions of growth of high-quality relaxed Si1–x Ge x layers with a high Ge content by the vapor-phase decomposition of monogermane on a sublimating Si hot wire. Semiconductors 50, 1248–1253 (2016). https://doi.org/10.1134/S1063782616090220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616090220

Navigation