Skip to main content
Log in

Radiation-induced bistable centers with deep levels in silicon n +p structures

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The method of deep level transient spectroscopy is used to study electrically active defects in p-type silicon crystals irradiated with MeV electrons and α particles. A new radiation-induced defect with the properties of bistable centers is determined and studied. After keeping the irradiated samples at room temperature for a long time or after their short-time annealing at T ∼ 370 K, this defect does not display any electrical activity in p-type silicon. However, as a result of the subsequent injection of minority charge carriers, this center transforms into the metastable configuration with deep levels located at E V + 0.45 and E V + 0.54 eV. The reverse transition to the main configuration occurs in the temperature range of 50–100°C and is characterized by the activation energy ∼1.25 eV and a frequency factor of ∼5 × 1015 s–1. The determined defect is thermally stable at temperatures as high as T ∼ 450 K. It is assumed that this defect can either be a complex of an intrinsic interstitial silicon atom with an interstitial carbon atom or a complex consisting of an intrinsic interstitial silicon atom with an interstitial boron atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chantre, Appl. Phys. A 48, 3 (1989).

    Article  ADS  Google Scholar 

  2. G. D. Watkins, Mater. Sci. Forum 38-41, 39 (1989).

    Article  Google Scholar 

  3. B. N. Mukashev, Kh. A. Abdullin, and Yu. V. Gorelkinskii, Phys. Usp. 43, 139 (2000).

    Article  ADS  Google Scholar 

  4. L. F. Makarenko and L. I. Murin, Phys. Status Solidi B 145, 241 (1988).

    Article  ADS  Google Scholar 

  5. G. D. Watkins, Rev. Solid State Sci. 4, 279 (1990).

    Google Scholar 

  6. R. M. Fleming, C. H. Seager, D. V. Lang, E. Bielejec, and J. M. Campbell, Appl. Phys. Lett. 90, 172 (2007).

    Article  Google Scholar 

  7. F. P. Korshunov and Yu. V. Bogatyrev, Izv. NAN Belarusi, Ser. Fiz.-Tekh. Nauk 4, 106 (2008).

    Google Scholar 

  8. V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, L. I. Murin, J. Coutinho, V. J. B. Torres, L. Dobaczewski, and B. G. Svensson, Phys. Status Solidi A 208, 568 (2011).

    Article  ADS  Google Scholar 

  9. J. Coutinho, V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, L. I. Murin, B. J. Svensson, M. J. Rayson, and P. R. Briddon, Phys. Rev. B 86, 174101 (2012).

    Article  ADS  Google Scholar 

  10. V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, L. I. Murin, J. Coutinho, M. J. Rayson, P. R. Briddon, and B. G. Svensson, Solid State Phenom. 205–206, 181 (2014).

    Google Scholar 

  11. S. B. Lastovskii, V. P. Markevich, A. S. Yakushevich, F. P. Korshunov, L. I. Murin, and L. F. Makarenko, Dokl. NAN Belarusi 59 (4), 57 (2015).

    Google Scholar 

  12. L. Dobaczewski, A. R. Peaker, and B. K. Nielsen, J. Appl. Phys. 96, 4689 (2004).

    Article  ADS  Google Scholar 

  13. L. F. Makarenko, S. B. Lastovskii, H. S. Yakushevich, M. Moll, and I. Pintilie, Phys. Status Solidi A 211, 2558 (2014).

    Article  Google Scholar 

  14. J. Hermansson, L. I. Murin, T. Hallberg, V. P. Markevich, J. L. Lindström, M. Kleverman, and B. G. Svensson, Phys. B: Condens. Matter 302–303, 188 (2001).

    Article  Google Scholar 

  15. L. I. Khirunenko, L. I. Murin, J. L. Lindström, M. G. Sosnin, and Yu. V. Pomozov, Phys. B: Condens. Matter 308–310, 458 (2001).

    Article  Google Scholar 

  16. V. P. Markevich, A. R. Peaker, B. Hamilton, V. E. Gusakov, S. B. Lastovskii, L. I. Murin, N. Ganagona, E. V. Monakhov, and B. G. Svensson, Solid State Phenom. 242, 290 (2016).

    Article  Google Scholar 

  17. G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. Davia, and A. Karpenko, Phys. Rev. B 73, 165202 (2006).

    Article  ADS  Google Scholar 

  18. R. Jones, T. A. G. Eberlein, N. Pinho, B. J. Coomer, J. P. Goss, P. R. Briddon, and S. Öberg, Nucl. Instrum. Methods Phys. Res. B 186, 10 (2002).

    Article  ADS  Google Scholar 

  19. M. Posselt, F. Gao, and D. Zwicker, Phys Rev. B 71, 245202 (2005).

    Article  ADS  Google Scholar 

  20. L. I. Murin, J. L. Lindström, G. Davies, and V. P. Markevich, Nucl. Instrum. Methods Phys. Res. B 253, 210 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Lastovskii.

Additional information

Original Russian Text © S.B. Lastovskii, V.P. Markevich, H.S. Yakushevich, L.I. Murin, V.P. Krylov, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 6, pp. 767–771.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lastovskii, S.B., Markevich, V.P., Yakushevich, H.S. et al. Radiation-induced bistable centers with deep levels in silicon n +p structures. Semiconductors 50, 751–755 (2016). https://doi.org/10.1134/S1063782616060130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616060130

Navigation