Skip to main content
Log in

Photoluminescence and Confinement of Excitons in Disordered Porous Films

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The exciton confinement effect in quantum dots at the surface of SiO2 spheres and the percolation phase transition in films based on a mixture of pure SiO2 spheres and spheres covered by CdS quantum dots (SiO2/CdS nanoparticles) are studied. It is found that, due to the high surface energy of spheres, the quantum dots deposited onto their surface are distorted, which modifies the exciton confinement effect: the effect is retained only in one direction, the direction normal to the surface of the spheres. As a result, the energy of the exciton ground state exhibits a complex dependence on both the quantum-dot radius and sphere size. In the optical spectra of films based on this mixture, the clustering of small-sized nanoparticles and then, at a critical concentration of nanoparticles of ~60%, the formation of a percolation cluster are detected for the first time. The critical concentration is twice higher than the corresponding quantity given by the model of geometrical “colored percolation”, which is a consequence of interaction between submicrometer nanoparticles. The relation between the basic parameters of the percolation transition, such as the film porosity, coordination number, and the quantity defining the number of particles in the percolation cluster, is obtained and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanocrystal Quantum Dots, Ed. by V. I. Klimov (CRC Press, Taylor Francis Group, London, New York, 2010).

  2. Semiconductor Nanocrystals: From Basic Principles to Applications, Ed. by A. L. Efros, D. L. Lockwood, and L. Tsybeskov (Springer Science+Business Media, New York, 2003).

  3. R. G. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012).

    Article  Google Scholar 

  4. A. L. Rogach, D. Nagesha, J. W. Ostrander, M. Giersig, and N. A. Kotov, Chem. Mater. 12, 2676 (2000).

    Article  Google Scholar 

  5. Y. Fang, W. S. Loc, W. Lu, and J. Fang, Langmuir 27, 14091 (2011).

    Article  Google Scholar 

  6. N. V. Bondar, M. S. Brodyn, Yu. V. Yermolayeva, and A. V. Tolmachev, Physica E 43, 1882 (2011).

    Article  ADS  Google Scholar 

  7. W. Stober and A. Fink, J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  8. T. W. Melnyk, O. Knop, and W. R. Smithn, Can. J. Chem. 55, 1745 (1977).

    Article  Google Scholar 

  9. D. Scott and Ch. A. Tout, Mon. Not. R. Astron. Soc. 241, 109 (1989).

    Article  ADS  Google Scholar 

  10. J. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1992).

    Google Scholar 

  11. Powder Technology Handbook, 3nd ed., Ed. by H. Masuda, K. Higashitani, and H. Yoshida (CRC Press, Taylor Francis Group, London, New York, 2006).

  12. N. V. Bondar, J. Luminesc. 130, 1 (2010).

    Article  ADS  Google Scholar 

  13. A. B. Yu, C. L. Feng, R. P. Zou, and R. Y. Yang, Powder Techol. 130, 70 (2003).

    Article  Google Scholar 

  14. C. L. Feng and A. B. Yu, J. Colloid Interface Sci. 231, 136 (2000).

    Article  Google Scholar 

  15. R. M. German, Powder Tech. 253, 368 (2003).

    Article  Google Scholar 

  16. D. Bouvard and F. F. Lange, Acta Metal. Mater. 39, 3083 (1991).

    Article  Google Scholar 

  17. C.-H. Kuo and P. K. Gupta, Acta Metal. Mater. 43, 397 (1995).

    Article  Google Scholar 

  18. D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge Univ. Press, Cambridge, UK, 2000).

    Book  MATH  Google Scholar 

  19. L. Oger, J. P. Troadec, and D. Bideau, Powder Tech. 46, 133 (1986).

    Article  Google Scholar 

  20. A. S. Ioselevich and A. A. Kornyshev, Phys. Rev. E 65, 021301 (2002)

    Article  ADS  Google Scholar 

  21. A. S. Ioselevich, Extended Abstract of Doctoral Dissertation (Chernogolovka, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bondar.

Additional information

Original Russian Text © N.V. Bondar, M.S. Brodin, A.M. Brodin, N.A. Matveevskaya, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 3, pp. 369–376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondar, N.V., Brodin, M.S., Brodin, A.M. et al. Photoluminescence and Confinement of Excitons in Disordered Porous Films. Semiconductors 50, 364–371 (2016). https://doi.org/10.1134/S1063782616030039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616030039

Keywords

Navigation