Skip to main content
Log in

Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to ∼1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ge, X. Fang, J. Rong, and C. Zhou, Nanotechnology 24, 422001 (2013).

    Article  ADS  Google Scholar 

  2. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nature Nanotechnol. 3, 31 (2008).

    Article  ADS  Google Scholar 

  3. H. Wu and Yi Cui, Nano Today 7, 414 (2012).

    Article  Google Scholar 

  4. E. Quiroga-González, J. Carstensen, and H. Föll, Electrochim. Acta 101, 93 (2013).

    Article  Google Scholar 

  5. E. Quiroga-González, J. Carstensen, and H. Föll, Energies 6, 5145 (2013).

    Article  Google Scholar 

  6. E. Quiroga-González, E. Ossei-Wusu, J. Carstensen, and H. Föll, J. Electrochem. Soc. 158, E119 (2011).

    Article  Google Scholar 

  7. H. T. Nguyen, F. Yao, M. R. Zamfir, Ch. Biswas, K. P. So, Y. H. Lee, S. M. Kim, S. N. Cha, J. M. Kim, and D. Pribat, Adv. Energy Mater. 1, 1154 (2011).

    Article  Google Scholar 

  8. M. Ge, J. Rong, X. Fang, and C. Zhou, Nano Lett. 12, 2318 (2012).

    Article  ADS  Google Scholar 

  9. J. Armstrong, C. O’Dwyer, W. J. Macklin, and J. D. Holmes, Nano Res. 7, 1 (2014).

    Article  Google Scholar 

  10. T. L. Kulova, A. M. Skundin, Yu. V. Pleskov, O. I. Kon’kov, E. I. Terukov, and I. N. Trapeznikova, Semiconductors 40, 468 (2006).

    Article  ADS  Google Scholar 

  11. C. Yu, X. Li, T. Ma, J. Rong, R. Zhang, J. Shaffer, Y. An, Q. Liu, B. Wei, and H. Jiang, Adv. Energy Mater. 2, 68 (2012).

    Article  Google Scholar 

  12. A. V. Chernienko, E. V. Astrova, and Yu. A. Zharova, Tech. Phys. Lett. 39, 990 (2013).

    Article  ADS  Google Scholar 

  13. E. V. Astrova, A. V. Parfen’eva, G. V. Li, and Yu. A. Zharova, Semiconductors 49, 551 (2015).

    Article  ADS  Google Scholar 

  14. E. V. Astrova, E. F. Fedulova, I. A. Smirnova, A. D. Remenyuk, T. L. Kulova, and A. M. Skundin, Tech. Phys. Lett. 37, 731 (2011).

    Article  ADS  Google Scholar 

  15. V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, 2002), Chap. 9, p. 183.

    Book  Google Scholar 

  16. J. L. Goldman, B. R. Long, A. A. Gewirth, and R. G. Nuzzo, Adv. Funct. Mater. 21, 2412 (2011).

    Article  Google Scholar 

  17. S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, Nano Lett. 11, 3034 (2011).

    Article  Google Scholar 

  18. H. Yang, S. Huang, X. Huang, F. Fan, W. Liang, X. H. Liu, L.-Q. Chen, J. Y. Huang, J. Li, T. Zhu, and S. Zhang, Nano Lett. 12, 1953 (2012).

    Article  ADS  Google Scholar 

  19. G. V. Li, E. V. Astrova, A. M. Rumyantsev, V. B. Voronkov, A. V. Parfen’eva, V. A. Tolmachev, T. L. Kulova, and A. M. Skundin, Russ. J. Electrochem. 51, 899 (2015).

    Article  Google Scholar 

  20. E. V. Astrova, G. V. Li, A. V. Parfen’eva, A. M. Rumyantsev, V. V. Zhdanov, S. I. Pavlov, V. C. Levitskii, E. I. Terukov, and V. Yu. Davydov, Tech. Phys. 60, 531 (2015).

    Article  Google Scholar 

  21. G. V. Li, T. L. Kulova, V. A. Tolmachev, A.V.Chernienko, M. A. Baranov, S. I. Pavlov, E. V. Astrova, and A. M. Skundin, Semiconductors 47, 1275 (2013).

    Article  ADS  Google Scholar 

  22. http://www.shanshantech.com/en/Productsinfo.aspx? ProductsID=23&CateId=118

  23. http://www.shanshantech.com/en/Productsinfo.aspx? ProductsID=20&CateId=117

  24. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano 6, 1522 (2012).

    Article  ADS  Google Scholar 

  25. H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, and S. Zhang, J. Mech. Phys. Solids 70, 349 (2014).

    Article  ADS  Google Scholar 

  26. M. Green, E. Fielder, B. Scrosati, M. Wachtler, and J. S. Moreno, Electrochem. Solid State Lett. 6, A75 (2003).

    Article  Google Scholar 

  27. H. Ghassemi, M. Au, N. Chen, P. A. Heiden, and R. S. Yassar, ACS Nano 5, 7805 (2011).

    Article  Google Scholar 

  28. A. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973; Mir, Moscow, 1977), p. 47.

    Google Scholar 

  29. I. Ryu, J. W. Choi, Y. Cui, and W. D. Nix, J. Mech. Phys. Solids 59, 1717 (2011).

    Article  ADS  Google Scholar 

  30. U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Sources 163, 1003 (2007).

    Article  Google Scholar 

  31. L. Baggetto, D. Danilov, and P. H. Notten, Adv. Mater. 23, 1563 (2011).

    Article  Google Scholar 

  32. J. Wan, A. F. Kaplan, J. Zheng, X. Han, Y. Chen, N. J. Weadock, N. Faenza, S. Lacey, T. Li, J. Guo, and L. Hu, J. Mater. Chem. A 2, 6051 (2014).

    Article  Google Scholar 

  33. E. Quiroga-Gonzalez, J. Carstensen, and H. Föll, Materials 6, 626 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Astrova.

Additional information

Original Russian Text © E.V. Astrova, G.V. Li, A.M. Rumyantsev, V.V. Zhdanov, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 2, pp. 279–286.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astrova, E.V., Li, G.V., Rumyantsev, A.M. et al. Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries. Semiconductors 50, 276–283 (2016). https://doi.org/10.1134/S1063782616020032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616020032

Keywords

Navigation