Skip to main content
Log in

Increase in the Shockley–Read–Hall recombination rate in InGaN/GaN QWs as the main mechanism of the efficiency droop in LEDs at high injection levels

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is shown that the efficiency droop observed as the current through a GaN-based light-emitting diode increases is due to a decrease in the Shockley–Read–Hall nonradiative lifetime. The lifetime decreases with increasing current because a steadily growing number of traps in the density-of-states tails of InGaN/GaN quantum wells become nonradiative recombination centers upon the approach of quasi-Fermi levels to the band edges. This follows from the correlation between the efficiency droop and the appearance of negative differential capacitance, observed in the study. The correlation appears due to slow trap recharging via the trap-assisted tunneling of electrons through the n-type barrier of the quantum well and to the inductive nature of the diode-current variation with forward bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 2007.

    Article  ADS  Google Scholar 

  2. J. Iveland, L. Martinelly, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 2013.

    Article  ADS  Google Scholar 

  3. J. Iveland, M. Piccardo, L. Martinelly, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, Appl. Phys. Lett. 105, 052103 2014.

    Article  ADS  Google Scholar 

  4. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 2010.

    Article  ADS  Google Scholar 

  5. M. Pavesi, M. Manfredi, F. Rossi, M. Meneghini, E. Zanoni, U. Zehnder, and U. Strauss, Appl. Phys. Lett. 89, 041917 2006.

    Article  ADS  Google Scholar 

  6. M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, and B. Hahn, Phys. Status Solidi A 206, 1125 2009.

    Article  ADS  Google Scholar 

  7. N. I. Bochkareva, Y. T. Rebane, and Y. G. Shreter, Appl. Phys. Lett. 103, 191101 2013.

    Article  ADS  Google Scholar 

  8. N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 48, 1079 2014.

    Article  Google Scholar 

  9. N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Semiconductors 41, 87 2007.

    Article  ADS  Google Scholar 

  10. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 2010.

    Article  ADS  Google Scholar 

  11. T. J. Badcook, S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, Jpn. J. Appl. Phys. 52, 08JK10 (2013).

    Article  Google Scholar 

  12. Tunneling Phenomena in Solids, Ed. by E. Burstein and S. Lundqvist, Lectures presented at the 1967/NATO Advanced Study Institute at Risö, Denmark (Plenum, New York, 1969; Moscow, Mir, 1973).

  13. C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 1995.

    Article  ADS  Google Scholar 

  14. R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. van der Stricht, Appl. Phys. Lett. 74, 263 1999.

    Article  ADS  Google Scholar 

  15. D. Monroe, Phys. Rev. Lett. 54, 146 1985.

    Article  ADS  Google Scholar 

  16. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 47, 127 2013.

    Article  ADS  Google Scholar 

  17. Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, D. V. Tarkhin, Y. G. Shreter, E. A. Girnov, S. I. Stepanov, W. N. Wang, P. T. Chang, and P. J. Wang, Proc. SPIE 4996, 113 2003.

    Article  ADS  Google Scholar 

  18. M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and A. K. Jonscher, IEEE Trans. Electron Dev. 45, 2196 1998.

    Article  ADS  Google Scholar 

  19. S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim, and J. S. Park, Appl. Phys. Lett. 94, 131106 2009.

    Article  ADS  Google Scholar 

  20. Y. Li, C. D. Wang, L. F. Feng, C. Y. Zhu, H. X. Cong, D. Li, and G. Y. Zhang, J. Appl. Phys. 109, 124506 2011.

    Article  ADS  Google Scholar 

  21. R. F. Kazarinov, V. I. Stafeev, and R. A. Suris, Sov. Phys. Semicond. 1, 1084 1967.

    Google Scholar 

  22. A. Rose, Concept in Photoconductivity and Allied Problems (Krieger, New York, 1978).

    Google Scholar 

  23. N. H. Nickel, N. M. Johnson, and C. G. van de Walle, Phys. Rev. Lett. 72, 3393 1994.

    Article  ADS  Google Scholar 

  24. A. G. Kazanskii and E. P. Milichevich, Sov. Phys. Semicond. 18, 1137 1984.

    Google Scholar 

  25. D. L. Gricom, J. Appl. Phys. 58, 2524 1985.

    Article  ADS  Google Scholar 

  26. D. Han, K. Wang, and L. Yang, J. Appl. Phys. 80, 2475 1996.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Shreter.

Additional information

Original Russian Text © N.I. Bochkareva, Yu.T. Rebane, Yu.G. Shreter, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 12, pp. 1714–1719.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkareva, N.I., Rebane, Y.T. & Shreter, Y.G. Increase in the Shockley–Read–Hall recombination rate in InGaN/GaN QWs as the main mechanism of the efficiency droop in LEDs at high injection levels. Semiconductors 49, 1665–1670 (2015). https://doi.org/10.1134/S1063782615120040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615120040

Keywords

Navigation