Skip to main content
Log in

Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bhushan, Principles and Applications of Tribology, 2nd ed. (Wiley, Chichester, 2013) p. 980.

    Book  Google Scholar 

  2. Nanotribology and Nanomechanics: Measurement Techniques and Nanomechanics, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2011), Vol. 1, p. 623.

    Google Scholar 

  3. Nanotribology and Nanomechanics: Nanotribology, Biomimetics and Industrial Applications, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2011), Vol. 2, p. 1017.

    Google Scholar 

  4. B. Bhushan and A. V. Goldadem, Wear 244, 104 (2000).

    Article  Google Scholar 

  5. M. Chiesa and R. Garcia, Appl. Phys. Lett. 96, 263112 (2010).

    Article  ADS  Google Scholar 

  6. Hao Sun, Haibin Chu, Jinyong Wang, Lei Ding, and Yan Li, Appl. Phys. Lett. 96, 083112 (2010).

    Article  ADS  Google Scholar 

  7. D. J. Lacks and R. M. Sankaran, J. Phys. D: Appl. Phys. 44, 453001 (2011).

    Article  ADS  Google Scholar 

  8. M. Mirkowska, M. Kratzer, C. Teichert, and H. Flachberger, Chem. Ing. Tech. 86, 857 (2014).

    Article  Google Scholar 

  9. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).

    Article  ADS  Google Scholar 

  10. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Article  ADS  Google Scholar 

  11. P. N. Brunkov, V. V. Goncharov, M. E. Rudinskii, A. A. Gutkin, N. Yu. Gordeev, V. M. Lantratov, N. A. Kalyuzhnyi, S. A. Mintairov, R. V. Sokolov, and S. G. Konnikov, Semiconductors 47, 1170 (2013).

    Article  ADS  Google Scholar 

  12. www.brukerafmprobes.com

  13. J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    Article  ADS  Google Scholar 

  14. I. Szlufarska, M. Chandross, and R. W. Carpick, J. Phys. D: Appl. Phys. 41, 123001 (2008).

    Article  ADS  Google Scholar 

  15. A. I. Livshits and A. L. Shluger, Phys. Rev. B 56, 12482 (1997).

    Article  ADS  Google Scholar 

  16. U. Landman, W. D. Luetke, and M. W. Ribarski, J. Vacuum. Sci. Technol. A 7, 2829 (1989).

    Article  ADS  Google Scholar 

  17. U. Landman, W. D. Luetke, and E. M. Ringer, Wear 153, 3 (1992).

    Article  Google Scholar 

  18. H. Bracht, M. Norseng, E. E. Haller, K. Eberl, and M. Cardona, Solid State Commun. 112, 301 (1999).

    Article  ADS  Google Scholar 

  19. G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 55, 1327 (1985).

    Article  ADS  Google Scholar 

  20. E. W. Williams and H. B. Bebb, in Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beer (Academic Press, New York, London, 1972), Vol. 8, p. 321.

  21. P. Krispin, J. Appl. Phys. 65, 3470 (1989).

    Article  ADS  Google Scholar 

  22. T. Ishida, K. Maeda, and S. Takeuchi, Appl. Phys. 21, 257 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baklanov.

Additional information

Original Russian Text © A.V. Baklanov, A.A. Gutkin, N.A. Kalyuzhnyy, P.N. Brunkov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 8, pp. 1083–1087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklanov, A.V., Gutkin, A.A., Kalyuzhnyy, N.A. et al. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon. Semiconductors 49, 1057–1061 (2015). https://doi.org/10.1134/S1063782615080060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615080060

Keywords

Navigation