Skip to main content
Log in

Theory of the electronic structure of substitutional semiconductor alloys: Analytical approaches

  • Review
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Methods of predicting the electronic structure of disordered semiconductor alloys involving mainly isoelectronic substitution are reviewed. Special emphasis is placed on analytical methods of studying currently available models of alloys. An approximate equation for the localization threshold of electronic states in the Lifshitz model is considered, and the inaccuracy of this equation is estimated. The contributions of the perturbation potential of an individual impurity and of crystal-lattice distortions in the vicinity of the impurity center are analyzed on the basis of the Faddeev equations. The contributions of intrinsic impurity potentials and volume effects to the formation of the electronic structure of semiconductor alloys are esti- mated. Methods of calculating matrix elements of the perturbation potentials of isoelectronic impurities in alloys with consideration for deformation effects are considered. The procedure of calculating the compositional dependence of the band gap of multicomponent alloys is described. A comparative analysis of various methods for predicting the formation of electronic states bound at individual isoelectronic impurities in semiconductors is conducted. The theory of the energy spectrum of charged impurities in isoelectronic alloys is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Emtsev and T. V. Mashovets, Impurities and Point Defects in Semiconductors (Radio i Svyaz’, Moscow, 1981) [in Russian].

  2. H. van Haeringen, J. Math. Phys. 24, 1274 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. K. B. Tolpygo, Sov. Phys. Solid State 11, 2304 (1969).

    Google Scholar 

  4. V. A. Telezhkin and K. B. Tolpygo, Sov. Phys. Solid State 19, 1773 (1977).

    Google Scholar 

  5. V. K. Bazhenov and V. I. Fistul’, Sov. Phys. Semicond. 18, 843 (1984).

    Google Scholar 

  6. I. M. Lifshitz, Sov. Phys. Usp. 7, 571 (1964).

    Google Scholar 

  7. G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954).

    Article  ADS  Google Scholar 

  8. J. C. Slater, Insulators, Semiconductors, Metals (McGraw-Hill, New York, 1967; Mir, Moscow, 1969), rus. p. 336.

  9. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Sov. J. Low Temp. Phys. 2, 533 (1976).

    Google Scholar 

  10. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Moscow, Nauka, 1982) [in Russian].

  11. L. A. Pastur, in Probability Theory, Mathematical Statistics, and Technical Cybernetics, Vol. 25 of Results of Science and Engineering (VINITI AN SSSR, Moscow, 1987), p. 3 [in Russian].

  12. L. A. Pastur and A. L. Figotin, Spectra of Random and Almost-Periodic Operators (Springer, Berlin, 1992; Nauka, Moscow, 1991).

    Google Scholar 

  13. G. G. Sergeeva, Sov. Phys. Solid State 7, 1578 (1965).

    Google Scholar 

  14. A. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973; Mir, Moscow, 1977).

  15. J. Bourgoin and M. Lanno, Point Defects in Semiconductors 1: Theoretical Aspects (Springer, Berlin, 1983; Mir, Moscow, 1985).

  16. J. Bourgoin and M. Lanno, Point Defects in Semiconductors 2: Experimental Aspects (Springer, Berlin, 1983; Mir, Moscow, 1985).

  17. H. Matare, Defect Electronics in Semiconductors (Wiley-Intersci., New York, 1971; Mir, Moscow, 1974).

  18. A. M. Stoneham, Theory of Defects in Solids (Clarendon, Oxford, 1985; Mir, Moscow, 1971), Vols. 1, 2.

  19. S. V. Bulyarsky and V. V. Fistul’, Thermodynamics and Kinetics of Interacting Defects in Semiconductors (Nauka, Fizmatlit, Moscow, 1997) [in Russian].

  20. M. Jaros, Adv. Phys. 29, 409 (1980).

    Article  ADS  Google Scholar 

  21. S. T. Pantelides, Rev. Mod. Phys. 50, 797 (1978).

    Article  ADS  Google Scholar 

  22. A. B. Roitsin, Sov. Phys. Semicond. 8, 1 (1974).

    Google Scholar 

  23. R. Rennie, Adv. Phys. 26, 285 (1977).

    Article  ADS  Google Scholar 

  24. D. Chattopadhyay and H. J. Queisser, Rev. Mod. Phys. 53, 745 (1981).

    Article  ADS  Google Scholar 

  25. F. Bassani, G. Iadonisi, and B. Preziosi, Rep. Progr. Phys. 37, 1099 (1974).

    Article  ADS  Google Scholar 

  26. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, and P. Exner, Solvable Models in Quantum Mechanics (AMS, Providence, 2005).

  27. S. Albeverio, J. E. Fenstad, R. Hoegh-Krohn, and T. Lindstrom, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Books on Mathematics (Dover, 2009; Mir, Moscow, 1990).

  28. Yu. N. Demkov and V. N. Ostrovskii, Method of ZeroRadius Potentials in Atomic Physics (Leningr. Univ., Leningrad, 1975) [in Russian].

  29. V. B. Belyaev, Lectures in the Theory of Few-Particle Systems (Energoatomizdat, Moscow, 1986) [in Russian].

  30. B. F. Haas, T. Frederico, B. V. Carlson, and F. B. Guimarães, Nucl. Phys. A 728, 379 (2003).

    Article  ADS  Google Scholar 

  31. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  32. J. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ., Cambridge, New York, 1979; Mir, Moscow, 1982).

  33. T. Ziman, Phys. Rev. B 26, 7066 (1982).

    Article  ADS  Google Scholar 

  34. A. Eilmes and R. A. Römer, Phys. Status Solidi B 241, 2079 (2004).

    Article  ADS  Google Scholar 

  35. J. M. Luttinger and R. Tao, Ann. Phys. (N.Y.) 145, 185 (1983).

    Article  ADS  Google Scholar 

  36. P. Lloyd, J. Phys. C: Solid State Phys. 2, 1717 (1969).

    Article  ADS  Google Scholar 

  37. J. T. Edwards and D. J. Thouless, J. Phys. C: Solid State Phys. 4, 453 (1971).

    Article  ADS  Google Scholar 

  38. D. J. Thouless. Phys. Rep. 13, 93 (1974).

  39. M. Saitoh, Phys. Lett. A 33, 44 (1970).

    Article  ADS  Google Scholar 

  40. M. Saitoh, Progr. Theor. Phys. 45, 746 (1971).

    Article  ADS  Google Scholar 

  41. F. Wegner, Z. Phys. B 44, 9 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  42. F. Constantinescu, J. Fröhlich, and T. Spencer, J. Stat. Phys. 34, 571 (1984).

    Article  ADS  Google Scholar 

  43. L. A. Pastur, Comm. Math. Phys. 75, 179 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Delyon and B. Souillard, Commun. Math. Phys. 94, 289 (1984).

    Article  ADS  Google Scholar 

  45. W. Craig and B. Simon, Commun. Math. Phys. 90, 207 (1983).

    Article  ADS  Google Scholar 

  46. D. Simon, M. Taylor, and T. Wolff, Phys. Rev. Lett. 54, 1589 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  47. N. F. Mott, Adv. Phys. 16 (61), 49 (1967).

    Article  ADS  Google Scholar 

  48. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering Reactions and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971; Plenum, New York, 1975).

  49. A. L. Efros, Sov. Phys. Usp. 21, 746 (1978).

    Article  ADS  Google Scholar 

  50. M. V. Sadovskii, Sov. Phys. Usp. 24, 96 (1981).

    Article  ADS  Google Scholar 

  51. V. L. Bonch-Bruevich, Sov. Phys. Usp. 27, 664 (1984).

    Google Scholar 

  52. V. L. Bonch-Bruevich, I. P. Zvyagin, R. Kaiper, A. G. Mironov, et al., Electronic Theory of Disordered Semiconductors (Nauka, Moscow, 1981) [in Russian].

  53. T. C. Lubensky, Lect. Notes Phys. 149, 199 (1981).

    Article  ADS  Google Scholar 

  54. K. B. Efetov, A. I. Larkin, and D. E. Khmel’nitskii, Sov. Phys. JETP 52, 568 (1980).

    ADS  Google Scholar 

  55. K. B. Efetov, Sov. Phys. JETP 55, 514 (1982).

    Google Scholar 

  56. K. B. Efetov, Adv. Phys. 32, 53 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  57. K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, Cambridge, 1999).

  58. R. Newton, Scattering Theory of Waves and Particles (Springer, Berlin, 1982; Mir, Moscow, 1969).

    Chapter  Google Scholar 

  59. G. Ehrenreich and L. Schwartz, The Electronic Structure of Alloys, Solid State Physics, Vol. 31 (Academic Press, New York, San Francisco, London, 1976; Mir, Moscow, 1979).

    Google Scholar 

  60. A. Yu. Zakharov and Ya. Ya. Shcherbak, Sov. Phys. Semicond. 10, 461 (1976).

    Google Scholar 

  61. A. Yu. Zakharov and Ya. Ya. Shcherbak, Sov. Phys. Semicond. 13, 1112 (1979).

    Google Scholar 

  62. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  ADS  Google Scholar 

  63. F. Yonezawa, Progr. Theor. Phys. 31, 357 (1964).

    Article  ADS  Google Scholar 

  64. F. Yonezawa and T. Matsubara, Progr. Theor. Phys. 35, 357 (1966); Progr. Theor. Phys. 35, 759 (1966).

    Article  ADS  Google Scholar 

  65. F. Yonezawa, Progr. Theor. Phys. 40, 734 (1968); Progr. Theor. Phys. 39, 1076 (1968).

    Article  ADS  Google Scholar 

  66. F. Yonezawa and R. Morigaki, Progr. Theor. Phys. Suppl., No. 53, 1 (1973).

    Article  ADS  Google Scholar 

  67. T. Matsubara, Progr. Theor. Phys. Suppl., No. 46, 326 (1970).

    Article  ADS  Google Scholar 

  68. G. L. Bir and G. E. Pikus, Symmetry and StainInduced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).

  69. A. Blacha, H. Presting, and M. Cardona, Phys. Status Solidi B 126, 11 (1984).

    Article  ADS  Google Scholar 

  70. A. Yu. Zakharov and M. V. Kravchenko, Sov. Phys. Semicond. 16, 974 (1982).

    Google Scholar 

  71. A. Yu. Zakharov and M. V. Kravchenko, Sov. Phys. Solid State 26, 1585 (1984).

    Google Scholar 

  72. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Nauk. dumka, Kiev, 1983; Springer, Berlin, 1996).

  73. L. D. Faddeev, Mathematical Questions in the Quantum Theory of Scattering for a System of Three Particles, Tr. Matem. Inst. V. A. Steklova AN SSSR, Vol. 63 (Akad. Nauk SSSR, Moscow, Leningrad, 1963) [in Russian].

  74. E. Schmid and H. Ziegelmann, The Quantum Mechanical Three-Body Problem, Vieweg Tracts in Pure and Applied Physics (Vieweg, Braunschweig, 1974; Nauka, Moscow, 1979).

  75. A. Yu. Zakharov, Sov. Phys. Semicond. 9, 282 (1975).

    Google Scholar 

  76. A. Yu. Zakharov, Sov. Phys. Solid State 15, 864 (1975).

    Google Scholar 

  77. A. Yu. Zakharov and L. P. Mironenko, Ukr. Fiz. Zh. 35, 119 (1990).

    Google Scholar 

  78. A. Yu. Zakharov and L. P. Mironenko, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 33 (3), 58 (1990).

    Google Scholar 

  79. Solids under High Pressure, Ed. by W. Paul and D. M. Warschauer (McGraw-Hill, New York, 1963; Mir, Moscow, 1966), p. 205.

  80. P. I. Baranskii, V. P. Klochkov, and I. V. Potykevich, Semiconductor Electronics. The Manual (Nauk. Dumka, Kiev, 1975) [in Russian].

  81. Physicochemical Properties of Semiconductor Materials, The Handbook (Nauka, Moscow, 1978) [in Russian].

  82. Semiconductors and Semimetals (Academic Press, Elsevier, 1966–2013), vols. 1–89.

  83. G. N. Watson, Quart. J. Math. (Oxford) 10, 266 (1939).

    Article  ADS  Google Scholar 

  84. E. Montroll, in Applied Combinatorial Mathematics, Ed. by E. Beckenbach, Collection of Articles (Wiley, New York, 1964; Mir, Mosccow, 1968), p. 9.

  85. G. S. Joyce, J. Phys. A: Math. Theor. 44, 315202 (2011).

    Article  ADS  Google Scholar 

  86. R. A. Faulkner, Phys. Rev. 175, 991 (1968).

    Article  ADS  Google Scholar 

  87. J. W. Allen, J. Phys. C: Solid State Phys. 4, 1936 (1971).

    Article  ADS  Google Scholar 

  88. W. Czaja, Festkörperprobleme (Adv. Solid State Phys.) 11, 65 (1971).

    Article  Google Scholar 

  89. A. Baldereschi and J. J. Hopfield, Phys. Rev. Lett. 28, 171 (1972).

    Article  ADS  Google Scholar 

  90. C. A. Coulson, L. B. Redei, and D. Stocker, Proc. R. Soc. London A 270 (1342), 357 (1962).

    Article  ADS  Google Scholar 

  91. L. B. Redei, Proc. R. Soc. London A 270 (1342), 383 (1962).

    Article  ADS  Google Scholar 

  92. D. Stocker, Proc. R. Soc. London A 270 (1342), 397 (1962).

    Article  ADS  Google Scholar 

  93. Yu. A. Bratashevskii, A. Yu. Zakharov, and Yu. M. Ivanchenko, Solid State Commun. 15, 1777 (1974).

    Article  ADS  Google Scholar 

  94. F. Stern, in Solid State Physics, Vol. 15, Ed. by F. Seitz and D. Turnbull (Academic Press, New York, 1963), p. 300.

  95. K. Hübner, Phys. Lett. 31, 365 (1970).

    Article  Google Scholar 

  96. A. Yu. Zakharov and L. P. Mironenko, Ukr. Fiz. Zh. 34, 421 (1989).

    Google Scholar 

  97. P. Vogl, Adv. Electron. Electron Phys. 62, 101 (1984).

    Article  Google Scholar 

  98. N. A. Goryunova, Solid Substitution Solutions in Compounds with ZnS Structure (Akad. Nauk SSSR, Moscow, 1955) [in Russian].

  99. N. A. Goryunova, Complex Diamond-Like Semiconductors (Sov. Radio, Moscow, 1968) [in Russian].

  100. A. B. Almazov, Electronic Properties of Semiconductor Solid Solutions (Nauka, Moscow, 1966) [in Russian].

  101. Yu. M. Ivanchenko and A. A. Lisyanskii, Physica A 107, 567 (1981).

    Article  ADS  Google Scholar 

  102. Yu. M. Ivanchenko, A. I. Kozinskaya, and A. A. Lisyanskii, Solid State Commun. 38, 297 (1981).

    Article  ADS  Google Scholar 

  103. S. B. Borisov, Yu. A. Genenko, A. Yu. Zakharov, and Ya. Ya. Shcherbak, in Semiconductor Doping (Nauka, Moscow, 1982), p. 5 [in Russian].

  104. A. Yu. Zakharov and Yu. M. Ivanchenko, Solid State Commun. 19, 533 (1976).

    Article  ADS  Google Scholar 

  105. A. Yu. Zakharov and Yu. M. Ivanchenko, Sov. J. Low Temp. Phys. 4, 19 (1978).

    Google Scholar 

  106. A. Yu. Zakharov, Trans. Theory Stat. Phys. 37, 613 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Zakharov.

Additional information

Dedicated to the memory of my Teachers, Prof. Yuli Mikhailovich Ivanchenko (December 18, 1938–December 26, 2014) and Corresponding Member of the Ukrainian Academy of Sciences, Prof. Kirill Borisovich Tolpygo (May 3, 1916–May 13, 1994).

Original Russian Text © A.Yu. Zakharov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 7, pp. 865–886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.Y. Theory of the electronic structure of substitutional semiconductor alloys: Analytical approaches. Semiconductors 49, 843–866 (2015). https://doi.org/10.1134/S1063782615070246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615070246

Navigation