Skip to main content
Log in

Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In0.70Al0.30As/In0.76Ga0.24As/In0.70Al0.30As structures on GaAs substrates

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In0.70Al0.30As/In0.76Ga0.24As/In0.70Al0.30As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect are studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-H. Kim and J. A. del Alamo, IEEE Electron. Dev. Lett. 31, 806 (2010).

    Article  ADS  Google Scholar 

  2. W. E. Hoke, T. D. Kennedy, A. Toraby, C. S. Whelan, P. F. Marsh, R. E. Leoni, C. Xu, and K. C. Hsien, J. Cryst. Growth 251, 827 (2003).

    Article  ADS  Google Scholar 

  3. W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. McTaggart, S. M. Lardizabal, and K. Hetzler, J. Vac. Sci. Technol. B 17, 1131 (1999).

    Article  Google Scholar 

  4. O. Yastrubchak, T. Wosinski, T. Figielski, E. Lusakowska, B. Pecz, and A. L. Toth, Physica E 17, 561 (2003).

    Article  ADS  Google Scholar 

  5. G. B. Galiev, I. S. Vasil’evskii, S. S. Pushkarev, E. A. Klimov, R. M. Imamov, P. A. Buffat, B. Dwir, and E. I. Suvorova, J. Cryst. Growth 366, 55 (2013).

    Article  ADS  Google Scholar 

  6. G. B. Galiev, S. S. Pushkarev, A. S. Orekhov, R. R. Galiev, E. A. Klimov, P. P. Maltsev, and R. M. Imamov, Crystallogr. Rep. 59, 425 (2014).

    Article  ADS  Google Scholar 

  7. G. B. Galiev, S. S. Pushkarev, E. A. Klimov, P. P. Mal’tsev, R. M. Imamov, and I. A. Subbotin, Crystallogr. Rep. 59, 258 (2014).

    Article  ADS  Google Scholar 

  8. Y. Song, S. Wang, I. Tangring, Z. Lai, and M. Sadeghi, J. Appl. Phys. 106, 123531 (2009).

    Article  ADS  Google Scholar 

  9. S.-G. Ihn, S. J. Jo, and J.-I. Song, Appl. Phys. Lett. 88, 132108 (2006).

    Article  ADS  Google Scholar 

  10. A. S. Brown, U. K. Mishra, J. A. Henige, and M. J. Delaney, J. Appl. Phys. 64, 3476 (1988).

    Article  ADS  Google Scholar 

  11. F. Capotondi, G. Biasiol, D. Ercolani, V. Grillo, E. Carlino, F. Romanato, and L. Sorba, Thin Solid Films 484, 400 (2005).

    Article  ADS  Google Scholar 

  12. B. A. Joyce, J. H. Neave, J. Zhang, D. D. Vvedensky, et al., Semicond. Sci. Technol. 5, 1147 (1990).

    Article  ADS  Google Scholar 

  13. P. Werner, N. D. Zakharov, Y. Chen, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, Appl. Phys. Lett. 62, 2798 (1993).

    Article  ADS  Google Scholar 

  14. R. S. Goldman, H. H. Wieder, K. L. Kavanagh, K. Rammohan, and D. H. Rich, Appl. Phys. Lett. 65, 1424 (1994).

    Article  ADS  Google Scholar 

  15. Q. Sun, C. Lacelle, D. Morris, M. Buchanan, P. Marshall, et al., Appl. Phys. Lett. 59, 1359 (1991).

    Article  ADS  Google Scholar 

  16. R. S. Goldman, K. L. Kavanagh, H. H. Wieder, K. Rammohan, S. N. Ehrlich, and R. M. Feenstra, J. Appl. Phys. 83, 5137 (1998).

    Article  ADS  Google Scholar 

  17. G. B. Galiev, S. S. Pushkarev, I. S. Vasil’evskii, E. A. Klimov, and R. M. Imamov, Semiconductors 47, 997 (2013).

    Article  ADS  Google Scholar 

  18. B. Jonsson and S. T. Eng, IEEE J. Quantum Electron. 26, 2025 (1990).

    Article  ADS  Google Scholar 

  19. Ch. Jirauschek, IEEE J. Quantum Electron. 45, 1059 (2009).

    Article  ADS  Google Scholar 

  20. V. A. Kulbachinskii, R. A. Lunin, V. G. Kytin, A. S. Bugaev, and A. P. Senichkin, J. Exp. Theor. Phys. 83, 841 (1996).

    ADS  Google Scholar 

  21. L. Daweritz, C. Muggelberg, R. Hey, H. Kostian, and M. Horick, Solid State Electron. 37, 783 (1994).

    Article  ADS  Google Scholar 

  22. V. A. Kulbachinskii, R. A. Lunin, N. A. Yuzeeva, I. S. Vasil’evskii, G. B. Galiev, and E. A. Klimov, Semiconductors 47, 935 (2013).

    Article  ADS  Google Scholar 

  23. P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).

    Article  ADS  Google Scholar 

  24. J. P. Harrang, R. J. Higgins, R. K. Goodall, P. R. Jay, M. Laviron, and P. Delescluse, Phys. Rev. B 32, 8126 (1985).

    Article  ADS  Google Scholar 

  25. A. de Vissser,_V. I. Kadushkin, V. A. Kulbachinskii, V. G. Kytin, A. P. Senichkin, and E. L. Shangina, JETP Lett. 59, 363 (1994).

    ADS  Google Scholar 

  26. V. A. Kulbachinskii, R. A. Lunin, E. V. Bogdanov, V. G. Kytin, and A. P. Senichkin, Physica B 229, 262 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kulbachinskii.

Additional information

Original Russian Text © V.A. Kulbachinskii, L.N. Oveshnikov, R.A. Lunin, N.A. Yuzeeva, G.B. Galiev, E.A. Klimov, S.S. Pushkarev, P.P. Maltsev, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 7, pp. 942–950.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulbachinskii, V.A., Oveshnikov, L.N., Lunin, R.A. et al. Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In0.70Al0.30As/In0.76Ga0.24As/In0.70Al0.30As structures on GaAs substrates. Semiconductors 49, 921–929 (2015). https://doi.org/10.1134/S1063782615070131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615070131

Navigation