Skip to main content
Log in

DNA detection by THz pumping

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

DNA semiconductor detection and sequencing is considered to be the most promising approach for future discoveries in genome and proteome research which is dramatically dependent on the challenges faced by semiconductor nanotechnologies. DNA pH-sensing with ion-sensitive field effect transistor (ISFET) is well-known to be a successfully applied electronic platform for genetic research. However this method lacks fundamentally in chemical specificity. Here we develop the first ever silicon nanosandwich pump device, which provides both the excitation of DNA fragments’ self-resonant modes and the feedback for current-voltage measurements at room temperature. This device allows direct detection of singlestranded label-free oligonucleotides by measuring their THz frequency response in aqueous solution. These results provide a new insight into the nanobioelectronics for the future real-time technologies of direct gene observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Higuchi, C. Fockler, G. Dollinger, and R. Watson, Nature Biotechnol. 11, 1026 (1993).

    Article  Google Scholar 

  2. M. K. Udvardi, T. Czechowski, and W. R. Scheible, The Plant Cell 20, 1736 (2008).

    Article  Google Scholar 

  3. H. D. van Guilder,_K. E. Vrana, and W. M. Freeman, BioTechniques 44, 619 (2008).

    Article  Google Scholar 

  4. J. Liu, C. Liu, and W. He, Curr. Org. Chem. 17, 564 (2013).

    Article  Google Scholar 

  5. J. Eid, A. Fehr, J. Gray, et al., Science 323, 133 (2009).

    Article  ADS  Google Scholar 

  6. J. M. Rothberg, W. Hinz, T. M. Rearick, et al., Nature 475, 348 (2011).

    Article  Google Scholar 

  7. C. Toumazou, L. M. Shepherd, S. C. Reed, et al., Nature Methods 10, 641 (2013).

    Article  Google Scholar 

  8. R. E. Webb, Electron. Eng. 37, 803 (1965).

    Google Scholar 

  9. I. Lundstrom, M. S. Shivaraman, C. S. Svenson, and L. Lundkvist, Appl. Phys. Lett. 26, 55 (1975).

    Article  ADS  Google Scholar 

  10. P. Bergveld, Sens. Actuators B 88, 1 (2003).

    Article  Google Scholar 

  11. C. S. Lee, S. K. Kim, and M. Kim, Sensors 9, 7111 (2009).

    Article  Google Scholar 

  12. N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, in Superconductor, Ed. by A. Luiz (SCIYO, 2010), p. 69.

  13. G. J. Thomas, Jr., Ann. Rev. Biophys. Biomol. Struct. 28, 1 (1999).

    Article  ADS  Google Scholar 

  14. A. Barhoumi, D. Zhang, F. Tam, and N. G. Halas, J. Am. Chem. Soc. 130, 5523 (2008).

    Article  Google Scholar 

  15. B. M. Fischer, M. Walther, and P. Jepsen, Phys. Med. Biol. 47, 3807 (2002).

    Article  Google Scholar 

  16. M. D. Blumenthal, B. Kaestner, L. Li, S. Giblin, T. J. B. M. Janssen, M. Pepper, D. Anderson, G. Jones, and D. A. Ritchie, Nature Phys. 3, 343 (2007).

    Article  ADS  Google Scholar 

  17. P. Recher, Y. V. Nazarov, and L. P. Kouwenhoven, Phys. Rev. Lett. 104, 156802 (2010).

    Article  ADS  Google Scholar 

  18. B. D. Josephson, Rev. Mod. Phys. 46, 251 (1974).

    Article  ADS  Google Scholar 

  19. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  20. N. T. Bagraev, V. K. Ivanov, L. E. Klyachkin, and I. A. Shelykh, Phys. Rev. B 70, 155315 (2004).

    Article  ADS  Google Scholar 

  21. N. T. Bagraev, A. Bouravleuv, W. Gehlhoff, L. Klyachkin, A. Malyarenko, and S. Rykov, Def. Dif. Forum 194, 673 (2001).

    Article  Google Scholar 

  22. N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).

    ADS  Google Scholar 

  23. N. T. Bagraev, A. D. Bouravleuv, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 439 (2002).

    Article  ADS  Google Scholar 

  24. N. T. Bagraev, A. D. Bouravleuv, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, Yu. I. Romanov, and S. A. Rykov, Semiconductors 39, 716 (2005).

    Article  Google Scholar 

  25. N. T. Bagraev, W. Gehlhoff, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, G. A. Oganesyan, D. S. Poloskin, and V. V. Romanov, Physica C 219, 437 (2006).

    Google Scholar 

  26. N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).

    Article  Google Scholar 

  27. N. T. Bagraev, E. Yu. Danilovskii, L. E. Klyachkin, A. M. Malyarenko, and V. A. Mashkov, Semiconductors 46, 75 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernev, A.L., Bagraev, N.T., Klyachkin, L.E. et al. DNA detection by THz pumping. Semiconductors 49, 944–948 (2015). https://doi.org/10.1134/S1063782615070064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615070064

Navigation