Skip to main content
Log in

Effect of different loss mechanisms in SiGeSn based mid-infrared laser

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We have analyzed the mid-infrared SiGeSn based Barrier-Well-Barrier Heterostracture and calculated the transparency carrier density and corresponding current density for the structure. The effects of different loss mechanisms like free carrier absorption, spontaneous recombination and Auger recombination processes on the transparency current density have been examined. It is shown that, the transparency current density increases significantly with the injected carrier density. Different scattering processes like acoustic phonon scattering and intervalley optical phonon scattering are taken into consideration for this analysis of free carrier absorption mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Oxford Univ. Press, Oxford, UK, 2003).

    Book  Google Scholar 

  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley Interscience, New York, 2004).

    Book  Google Scholar 

  3. M. J. Deen and P. K. Basu, Silicon Photonics: Fundamentals and Devices (Wiley, Chichester, UK, 2012).

    Book  Google Scholar 

  4. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, IEEE Sel. Top. Quantum Electron. 12, 1688 (2006).

    Article  Google Scholar 

  5. R. A. Soref and L. Friedman, Superlatt. Microstruct. 14, 189 (1993).

    Article  ADS  Google Scholar 

  6. R. A. Soref and C. H. Perry, J. Appl. Phys. 69, 539 (1991).

    Article  ADS  Google Scholar 

  7. J. Taraci, J. Tolle, J. Kouvetakis, M. R. McCartney, D. J. Smith, J. Menéndez, and M. A. Santana, Appl. Phys. Lett. 78, 3607 (2001).

    Article  ADS  Google Scholar 

  8. M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, and J. Kouvetakis, Appl. Phys. Lett. 83, 2163 (2003).

    Article  ADS  Google Scholar 

  9. J. Menéndez and J. Kouvetakis, Appl. Phys. Lett. 85, 1175 (2004).

    Article  ADS  Google Scholar 

  10. P. Moontragoon, Z. Ikonic, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).

    Article  ADS  Google Scholar 

  11. M. Virgilio and G. Grosso, J. Phys.: Condens. Matter 18, 1021 (2006).

    ADS  Google Scholar 

  12. G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).

    Article  ADS  Google Scholar 

  13. H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, Appl. Phys. Lett. 84, 4532 (2004).

    Article  ADS  Google Scholar 

  14. R. Ragan and H. A. Atwater, Appl. Phys. Lett. 77, 3418 (2000).

    Article  ADS  Google Scholar 

  15. P. Moontragoon, R. A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).

    Article  ADS  Google Scholar 

  16. V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, AIP Conf. Proc. 1199, 39 (2009).

    Google Scholar 

  17. V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, Thin Solid Films 518, 2531 (2010).

    Article  ADS  Google Scholar 

  18. J. Kouvetakis, J. Tolle, J. Mathews, R. Roucka, and J. Menéndez, ECS Trans. 33, 615 (2010).

    Google Scholar 

  19. S. Bagchi, C. D. Poweleit, R. T. Beeler, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 84, 193201 (2011).

    Article  ADS  Google Scholar 

  20. N. Tansu and L. J. Mawst, IEEE J. Quantum Electron. 39, 1205 (2003).

    Article  ADS  Google Scholar 

  21. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, Appl. Phys. Lett. 83, 2742 (2003).

    Article  ADS  Google Scholar 

  22. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, J. Appl. Phys. 96, 4653 (2004).

    Article  ADS  Google Scholar 

  23. W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, Opt. Express 20, 3235 (2012).

    Article  ADS  Google Scholar 

  24. G. Chang, S. W. Chang, and S. L. Chuang, Opt. Express 17, 11246 (2009).

    Article  ADS  Google Scholar 

  25. W. W. Chow, Appl. Phys. Lett. 100, 191113 (2012).

    Article  ADS  Google Scholar 

  26. F. M. Armando and S. Fahy, J. Appl. Phys. 109, 113703 (2011).

    Article  ADS  Google Scholar 

  27. G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedatrayee Chakraborty.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, V., Mukhopadhyay, B. & Basu, P.K. Effect of different loss mechanisms in SiGeSn based mid-infrared laser. Semiconductors 49, 836–842 (2015). https://doi.org/10.1134/S1063782615060081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615060081

Keywords

Navigation