Skip to main content
Log in

Role of surface self-trapped excitons in the energy relaxation of photoexcited silicon nanocrystals

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A new mechanism of the energy relaxation of hot charge carriers in silicon nanocrystals embedded in the SiO2 matrix is suggested. Effective energy exchange between “hot” excitons in a nanocrystal and the surface state of a self-trapped exciton leads to the excitation of vibrations in the Si-O surface defect. Relaxation of the vibration energy gives rise to the emission of local phonons, which, in turn, transfer the energy to the SiO2 matrix and transform into phonons with lower energies as a result of anharmonism. Simulation by the Monte Carlo method shows, due to this mechanism, “hot” localized charge carriers lose their energy within ∼100 ps after excitation. It is also shown that a broad band of energy distribution of “hot” charge carriers is formed rapidly (within 5–10 ps) after excitation of a nanocrystal. The maximum of the band shifts during the course of relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Nature Nanotechnol. 9, 19 (2014).

    Article  ADS  Google Scholar 

  2. A. P. Sviridov, V. G. Andreev, E. M. Ivanova, L. A. Osminkina, K. P. Tamarov, and V. Yu. Timoshenko, Appl. Phys. Lett. 103, 193110 (2013).

    Article  ADS  Google Scholar 

  3. D. Kovalev, E. Gross, N. Künzner, F. Koch, V. Yu. Timoshenko, and M. Fujii, Phys. Rev. Lett. 89, 137401 (2002).

    Article  ADS  Google Scholar 

  4. S. Furukawa and T. Miyasato, Jpn. J. Appl. Phys. 27, L2207 (1988).

    Article  ADS  Google Scholar 

  5. A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Appl. Phys. Lett. 97, 231116 (2010).

    Article  ADS  Google Scholar 

  6. M. C. Beard, K. P. Knutsen, P. Yu, M. J. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007).

    Article  ADS  Google Scholar 

  7. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, Nano Lett. 6, 424 (2006).

    Article  ADS  Google Scholar 

  8. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, Nature Photon. 2, 105 (2008).

    Article  ADS  Google Scholar 

  9. D. Timmerman, J. Valenta, K. Dohnalova, W. D. A. M. de Boer, and T. Gregorkiewicz, Nature Nanotechnol. 6, 710 (2011).

    Article  ADS  Google Scholar 

  10. R. Guerra, E. Degoli, and S. Ossicini, Phys. Rev. B 80, 155332 (2009).

    Article  ADS  Google Scholar 

  11. A. A. Prokofiev, A. N. Poddubny, and I. N. Yassievich, Phys. Rev. B 89, 125409 (2014).

    Article  ADS  Google Scholar 

  12. A. N. Poddubny, S. V. Goupalov, V. I. Kozub, and I. N. Yassievich, JETP Lett. 90, 683 (2010).

    Article  ADS  Google Scholar 

  13. G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 76, 2961 (1996).

    Article  ADS  Google Scholar 

  14. M. Lannoo and C. J. Delerue, Nanostructures (Springer, 2004).

    Google Scholar 

  15. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).

    Article  ADS  Google Scholar 

  16. W. D. A. M. de Boer, D. Timmerman, T. Gregorkiewicz, H. Zhang, W. J. Buma, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 85, 161409 (2012).

    Article  ADS  Google Scholar 

  17. W. D. A. M. de Boer, E. M. L. D. de Jong, D. Timmerman, T. Gregorkiewicz, H. Zhang, W. J. Buma, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 88, 155304 (2013).

    Article  ADS  Google Scholar 

  18. A. V. Gert and I. N. Yassievich, JETP Lett. 97, 87 (2013).

    Article  ADS  Google Scholar 

  19. A. S. Moskalenko, J. Berakdar, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 76, 085427 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gert.

Additional information

Original Russian Text © A.V. Gert, I.N. Yassievich, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 4, pp. 503–508.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gert, A.V., Yassievich, I.N. Role of surface self-trapped excitons in the energy relaxation of photoexcited silicon nanocrystals. Semiconductors 49, 492–497 (2015). https://doi.org/10.1134/S1063782615040107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615040107

Keywords

Navigation