Skip to main content
Log in

Electron-electron interaction and the universality of critical indices for quantum Hall effect plateau-plateau transitions in n-InGaAs/GaAs nanostructures with double quantum wells

  • XVIII Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 10–14, 2014
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The dependences of the longitudinal and Hall resistances on a magnetic field in the integer quantum Hall effect regime in n-InGaAs/GaAs heterostructures with a double quantum well are measured in the range of magnetic fields B = 0–16 T and temperatures T = 0.05–4.2 K, before and after infrared illumination. Analysis of the temperature dependence of the width of transitions between plateaus of the quantum Hall effect is performed in the scope of the scaling hypothesis allowing for electron-electron interaction effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Levine, S. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983).

    Article  ADS  Google Scholar 

  2. A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988); The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer, Berlin, 1986; Mir, Moscow, 1989), p. 127.

    Article  ADS  Google Scholar 

  3. H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B 33, 1488 (1985); H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988); H. P. Wei, S. W. Hwang, D. C. Tsui, and A. M. M. Pruisken, Surf. Sci. 229, 34 (1990).

    Article  ADS  Google Scholar 

  4. B. Huckestein, Rev. Mod. Phys. 67, 367 (1995).

    Article  ADS  Google Scholar 

  5. A. M. M. Pruisken, D. T. N. de Lang, L. A. Ponomarenko, and A. de Visser, Solid State Commun. 137, 540 (2006).

    Article  ADS  Google Scholar 

  6. A. M. M. Pruisken, B. Scoric, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999).

    Article  ADS  Google Scholar 

  7. A. M. M. Pruisken, D. T. N. de Lang, L. A. Ponomarenko, and A. de Visser, Solid State Commun. 137, 540 (2006).

    Article  ADS  Google Scholar 

  8. W. Li, G. A. Csathy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 206807 (2005); W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009).

    Article  ADS  Google Scholar 

  9. D.-H. Lee and Z. Wang, Phys. Rev. Lett. 76, 4014 (1996).

    Article  ADS  Google Scholar 

  10. A. M. M. Pruisken and M. A. Baranov, Europhys. Lett. 31, 543 (1995).

    Article  ADS  Google Scholar 

  11. A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys. (N.Y.) 322, 1265 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. A. M. M. Pruisken and I. S. Burmistrov, JETP Lett. 87, 220 (2008).

    Article  ADS  Google Scholar 

  13. B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437 (1990).

    Article  ADS  Google Scholar 

  14. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).

    Article  ADS  Google Scholar 

  15. H. Obuse, I. A. Gruzberg, and F. Evers, Phys. Rev. Lett. 109, 206804 (2012).

    Article  ADS  Google Scholar 

  16. I. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin, Ann. Phys. (N.Y.) 326, 1457 (2011).

    Article  ADS  MATH  Google Scholar 

  17. S. V. Gudina, Yu. G. Arapov, V. N. Neverov, S. M. Podgornykh, and M. V. Yakunin, Low Temp. Phys. 39, 374 (2013).

    Article  ADS  Google Scholar 

  18. Yu. G. Arapov, I. V. Karskanov, G. I. Harus, V. N. Neverov, N. G. Shelushinina, and M. V. Yakunin, Low Temp. Phys. 35, 32 (2009).

    Article  ADS  Google Scholar 

  19. D. E. Khmelnitskii, JETP Lett. 38, 552 (1983).

    ADS  Google Scholar 

  20. P. T. Coleridge, Phys. Rev. B 60, 4493 (1999).

    Article  ADS  Google Scholar 

  21. S. W. Hwang, H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 48, 11416 (1993).

    Article  ADS  Google Scholar 

  22. K. Kodera, A. Endo, S. Katsumoto, and Y. Iye, Physica E 34, 112 (2006).

    Article  ADS  Google Scholar 

  23. A. M. M. Pruisken, B. Scoric, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999).

    Article  ADS  Google Scholar 

  24. Yu. G. Arapov, S. V. Gudina, A. S. Klepikova, V. N. Neverov, S. G. Novokshonov, G. I. Harus, N. G. Shelushinina, and M. V. Yakunin, J. Exp. Theor. Phys. 144, 166 (2013).

    Google Scholar 

  25. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

    Article  ADS  Google Scholar 

  26. H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, in High Magnetic Fields in Semiconductor Physics, Ed. by G. Landwehr (Springer, Berlin, 1987), p. 11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gudina.

Additional information

Original Russian Text © Yu.G. Arapov, S.V. Gudina, A.S. Klepikova, V.N. Neverov, N.G. Shelushinina, M.V. Yakunin, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 2, pp. 186–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapov, Y.G., Gudina, S.V., Klepikova, A.S. et al. Electron-electron interaction and the universality of critical indices for quantum Hall effect plateau-plateau transitions in n-InGaAs/GaAs nanostructures with double quantum wells. Semiconductors 49, 181–186 (2015). https://doi.org/10.1134/S1063782615020037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615020037

Keywords

Navigation