Skip to main content
Log in

Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters

  • XVIII Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 10–14, 2014
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wannier, Phys. Rev. 52, 191 (1937).

    Article  ADS  Google Scholar 

  2. V. A. Kukushkin. Izv. Vyssh. Uchebn. Zaved., Radiofiz. 56, 494 (2013).

    Google Scholar 

  3. D. M. Samosvat, V. P. Evtikhiev, A. S. Shkol’nik, and G. G. Zegrya, Semiconductors 47, 22 (2013).

    Article  ADS  Google Scholar 

  4. G. I. Tselikov, V. Yu. Timoshenko, Yu. Plenge, E. Ryul’, A. M. Shatalova, G. A. Shandryuk, A. S. Merekalov, and R. V. Talroze, Semiconductors 47, 647 (2013).

    Article  ADS  Google Scholar 

  5. M. Bauer, J. Keeling, M. M. Parish, P. Lopez Rios, and P. B. Littlewood, Phys. Rev. B 87, 035302 (2013).

    Article  ADS  Google Scholar 

  6. V. A. Belyakov, K. V. Sidorenko, A. A. Konakov, N. V. Kurova, and V. A. Burdov, Semiconductors 47, 178 (2013).

    Article  ADS  Google Scholar 

  7. R. J. Elliott, Phys. Rev. 108, 1384 (1957).

    Article  ADS  Google Scholar 

  8. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1982), chs. 1, 6.

    Google Scholar 

  9. V. L. Ginzburg, Theoretical Physics and Astrophysics (Fizmatlit, Moscow, 1987; Pergamon, Oxford, 1979).

    Google Scholar 

  10. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  11. U. Gauchi and U. Keyhill, in Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979), ch. 5.

  12. M. A. Lavrent’ev and B. V. Shabat, Methods of Complex Analysis (Fizmatlit, Moscow, 1973), chs. 1, 6 [in Russian].

    Google Scholar 

  13. O. Madelung, Semiconductors: Data Handbook (Berlin, Springer, 2004).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kukushkin.

Additional information

Original Russian Text © V.A. Kukushkin, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 1, pp. 76–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, V.A. Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters. Semiconductors 49, 75–80 (2015). https://doi.org/10.1134/S1063782615010157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615010157

Keywords

Navigation