Skip to main content
Log in

Enhancement of low temperature electron mobility due to an electric field in an InGaAs/InAlAs double quantum well structure

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of external electric field F on multisubband electron mobility μ in an In0.53Ga0.47As/In0.52Al48As double quantum well structure is analyzed. We consider scatterings due to ionized impurities, interface roughness and alloy disorder to analyze μ. The variation of scattering mechanisms as a function of F for different structure parameters shows interesting results through intersubband interactions. For small well widths, the mobility is governed by interface roughness scattering. When two subbands are occupied, the effect of impurity scattering gets enhanced through intersubband interactions. Our results of enhancement in mobility as a function of F, can be utilized for low temperature devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O. Lim, M. K. Lee, T. J. Baek, M. Han, S. C. Kim, and J. K. Rhee, IEEE Electron Dev. Lett. 28, 546 (2007).

    Article  ADS  Google Scholar 

  2. M. P. Pires, C. L. De Souza, B. Yavich, R. G. Pereira, and W. Caevalho, J. Light Wave Technol. 18, 598 (2000).

    Article  ADS  Google Scholar 

  3. Z. Xu, C. Wong, W. Qi, and Z. Yuan, Opt. Lett. 35, 736 (2010).

    Article  ADS  Google Scholar 

  4. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  5. R. Fletcher, E. Zaremba, M. D. Iorid, C. L. Foxon, and J. J. Harris, Phys. Rev. B 41, 10649 (1990).

    Article  ADS  Google Scholar 

  6. G. Q. Hai, N. Studart, and F. M. Peeters, Phys. Rev. B 52, 8363 (1995).

    Article  ADS  Google Scholar 

  7. T. Sahu and K. A. Shore, Semicond. Sci. Technol. 24, 095021 (2009).

    Article  ADS  Google Scholar 

  8. S. K. Lyo, J. Phys.: Condens. Matter 13, 1259 (2001).

    ADS  Google Scholar 

  9. J. M. Li, J. J. Wu. XX. Han, Y. W. Lu, X. L. Liu, Q. S. Zhu, and Z. G. Wang, Semicond. Sci. Technol. 20, 1207 (2005).

    Article  ADS  Google Scholar 

  10. P. K. Subudhi, S. Palo, and T. Sahu, Superlat. Micro-struct. 51, 430 (2012).

    Article  ADS  Google Scholar 

  11. P. K. Basu and D. Raychaudhury, J. Appl. Phys. 68, 3443 (1990).

    Article  ADS  Google Scholar 

  12. F. M. S. Lima, A. L. A. Fonseca, and O. A. C. Nunes, J. Appl. Phys. 92, 5296 (2002).

    Article  ADS  Google Scholar 

  13. T. Sahu and K. A. Shore, J. Appl. Phys. 107, 113708 (2010).

    Article  ADS  Google Scholar 

  14. T. Sahu, S. Palo, and N. Sahoo, Physica E 46, 155 (2012).

    Article  ADS  Google Scholar 

  15. T. Sahu, N. Sahoo, and A. K. Panda, Superlat. Micro-struct. 61, 50 (2013).

    Article  ADS  Google Scholar 

  16. Y. Ando and T. Itoh, J. Appl. Phys. 61, 1497 (1987).

    Article  ADS  Google Scholar 

  17. S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, Appl. Phys. Lett. 86, 062113 (2005).

    Article  ADS  Google Scholar 

  18. K. Inoue and T. Matsuno, Phys. Rev. B 47, 3771 (1993).

    Article  ADS  Google Scholar 

  19. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, J. Appl. Phys. Lett. 89, 172120 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sahu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, T., Palo, S., Nayak, P.K. et al. Enhancement of low temperature electron mobility due to an electric field in an InGaAs/InAlAs double quantum well structure. Semiconductors 48, 1318–1323 (2014). https://doi.org/10.1134/S1063782614100261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100261

Keywords

Navigation