Skip to main content
Log in

Quantum corrections to threshold voltages for fully depleted SOI transistors with two independent gates

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The linear charge coupling effect of threshold voltages V th of the bottom (field) gate, i.e., a substrate of the silicon-on-insulator structure of fully depleted n-MIC transistors on a lightly doped silicon layer 20–50 nm thick, is studied depending on the voltage V bg of the top asymmetrically biased (with negative polarity) N +-poly-Si gate. It is shown that the quantum-mechanical correction conditioned by the electrostatically induced size effect of the transverse field should be considered when determining the linear charge coupling region between gates even at a silicon layer thickness of ∼50 nm. An increase in the positive charge on the surface states at the heterointerface with a silicon layer increases the quantum-mechanical correction by a factor of 2–4 due to the quantum capacitance effect affecting donor-trap recharging in the case of a significant difference between the opposite-polarity potentials of the two gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Su, J. Jacobs, J. Chung, and D. Antoniadis, IEEE Electron. Dev. Lett. 15, 183 (1994).

    Article  ADS  Google Scholar 

  2. H.-S. Wong, D. Frank, and P. Solomon, IEDM Tech. Digest, 407 (1998).

    Google Scholar 

  3. S. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekiwaga, K. Nagai, and H. Hiroshima, IEEE Trans. Electron. Dev. 47, 354 (2000).

    Article  ADS  Google Scholar 

  4. V. A. Gritsenko, I. E. Tyschenko, V. P. Popov, and T. V. Perevalov, Dielectrics in Nanoelectronics, Ed. by A. L. Aseev (Sib. Otdel. Ross. Akad. Nauk, Novosibirsk, 2010) [in Russian].

  5. I. J. Yang, K. Vieri, A. Chandrakasan, and D. A. Antoniadis, IEDM Tech. Digest, 877 (1995).

    Google Scholar 

  6. T. Hiramoto, IEICE Trans. Electron. E83-C, 161 (2000).

    Google Scholar 

  7. R. Tsuchiya, M. Horiuchi, S. Kimura, M. Yamaoka, T. Kawahara, S. Maegawa, T. Iposhi, Y. Ohji, and H. Matsuoka, IEDM Tech. Digest, 631 (2004).

    Google Scholar 

  8. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Nature Biotechnol. 23, 1294 (2005).

    Article  Google Scholar 

  9. Yu. D. Ivanov, T. O. Pleshakova, A. F. Kozlov, K. A. Malsagova, N. V. Krohin, V. V. Shumyantseva, I. D. Shumov, V. P. Popov, O. V. Naumova, B. I. Fomin, D. A. Nasimov, A. L. Aseev, and A. I. Archakov, Lab on a Chip. 12, 5104 (2012).

    Article  Google Scholar 

  10. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004).

    Article  ADS  Google Scholar 

  11. N. Elfström, R. Juhasz, I. Sychugov, T. Engfeldt, A. Eriksson, and K. J. Linnros, Nano Lett. 7, 2608 (2007).

    Article  ADS  Google Scholar 

  12. J. Hahm and C. M. Lieber, Nano Lett. 4, 51 (2004).

    Article  ADS  Google Scholar 

  13. O. V. Naumova, V. P. Popov, L. N. Safronov, B. I. Fomin, D. A. Nasimov, A. V. Latyshev, A. L. Aseev, Yu. D. Ivanov, and A. I. Archakov, ECS Trans. 25(10), 83 (2009).

    Article  Google Scholar 

  14. H. K. Lim and J. G. Fossum, IEEE Trans. Electron. Dev. 30, 1244 (1983).

    Article  ADS  Google Scholar 

  15. J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd ed. (Kluwer, Boston, MA, 2004).

    Book  Google Scholar 

  16. T. Rudenko, A. Nazarov, V. Kilchytska, D. Flandre, V. Popov, M. Ilnitsky, and V. Lysenko, Semicond. Phys. Quant. Electron. Optoelectron. 16, 299 (2013).

    Google Scholar 

  17. O. V. Naumova, B. I. Fomin, L. N. Safronov, D. A. Nasimov, M. A. Ilnitsky, N. V. Dudchenko, S. F. Devyatova, E. D. Zhanaev, V. P. Popov, A. V. Latyshev, and A. L. Aseev, Avtometriya 45(4), 6 (2009).

    Google Scholar 

  18. O. V. Naumova, B. I. Fomin, D. A. Nasimov, N. V. Dudchenko, S. F. Devyatova, E. D. Zhanaev, V. P. Popov, A. V. Latyshev, A. L. Aseev, Yu. D. Ivanov. and A. I. Archakov, Semicond. Sci. Technol. 25, 055004 (2010).

    Article  ADS  Google Scholar 

  19. A. A. Frantsuzov, N. I. Boyarkina, and V. P. Popov, Semiconductors 42, 215 (2008).

    Article  ADS  Google Scholar 

  20. M. G. Ancona and H. F. Tiersten, Phys. Rev. B 35, 7959 (1987); M. G. Ancona and G. J. Iafrate, Phys. Rev. B 39, 9536 (1989).

    Article  ADS  Google Scholar 

  21. D. B. M. Klaassen, Solid State Electron. 35, 953 (1992).

    Article  ADS  Google Scholar 

  22. C. Canali, G. Majni, R. Minder, and G. Ottaviani, IEEE Trans. Electron. Dev. 22, 1045 (1975).

    Article  Google Scholar 

  23. S. Reggiani, E. Gnani, A. Gnudi, M. Rudan, and G. Baccarani, IEEE Trans. Electron. Dev. 54, 2204 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Popov.

Additional information

Original Russian Text © V.P. Popov, M.A. Ilnitsky, O.V. Naumova, A.N. Nazarov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1348–1353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.P., Ilnitsky, M.A., Naumova, O.V. et al. Quantum corrections to threshold voltages for fully depleted SOI transistors with two independent gates. Semiconductors 48, 1312–1317 (2014). https://doi.org/10.1134/S1063782614100248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100248

Keywords

Navigation