Skip to main content
Log in

On the temperature delocalization of carriers in GaAs/AlGaAs/InGaAs quantum-well heterostructures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of temperature delocalization in semiconductor lasers (emission wavelength λ = 1060 nm) based on symmetric and asymmetric separate-confinement heterostructures fabricated by metal-organic vapor-phase epitaxy (MOVPE) is studied. Experimental and calculated estimates show that the carrier concentration in the waveguide increases by an order of magnitude when the temperature of a semiconductor laser is raised by ∼100°C. It is found that an increase in the temperature of the active zone leads to enhancement of the temperature delocalization of both electrons and holes. It is shown that the delocalization of holes begins at higher temperatures, compared with that of electrons. It is demonstrated experimentally that the onset of temperature delocalization depends on the threshold carrier concentration in the active region of a laser at room temperature. It is found that raising the energy depth of the active region by choosing the waveguide material makes it possible to fully suppress the temperature-delocalization process up to 175°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wenzel, IEEE J. Sel. Top. Quantum Electron. 19, 1502913 (2013).

    Article  Google Scholar 

  2. V. V. Kabanov, E. V. Lebedok, G. I. Ryabtsev, A. S. Smal’, M. A. Shchemelev, D. A. Vinokurov, S. O. Slipchenko, Z. N. Sokolova, and I. S. Tarasov, Semiconductors 46, 1316 (2012).

    Article  ADS  Google Scholar 

  3. A. Malag, E. Dabrowska, M. Teodorczyk, G. Sobczak, A. Kozlowska, and J. Kalbarczyk, IEEE J. Quantum Electron. 48, 465 (2012).

    Article  ADS  Google Scholar 

  4. P. Crump, G. Erbert, and H. Wenzel, IEEE J. Sel. Top. Quantum. Electron. 19, 1501211 (2013).

    Article  Google Scholar 

  5. A. Pietrzak, P. Crump, H. Wenzel, G. Erbert, F. Bugge, and G. Trankle, IEEE J. Sel. Top. Quantum Electron. 17, 1715 (2011).

    Article  Google Scholar 

  6. T. Morita, T. Nagakura, K. Torii, M. Takauji, J. Maeda, M. Miyamoto, H. Miyajima, and H. Yoshida, IEEE J. Sel. Top. Quantum Electron. 19, 1502104 (2013).

    Article  Google Scholar 

  7. P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak, U. Zeimer, S. Einfeldt, A. Ginolas, F. Bugge, K. Häusler, P. Ressel, H. Wenzel, and G. Erbert, Proc. SPIE 7198, 9 (2009).

    Google Scholar 

  8. I. S. Shashkin, D. A. Vinokurov, A. V. Lyutetski, D. N. Nikolaev, N. A. Pikhtin, M. G. Rastegaeva, Z. N. Sokolova, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, D. A. Veselov, A. D. Bondarev, and I. S. Tarasov, Semiconductors 46, 1207 (2012).

    Article  ADS  Google Scholar 

  9. I. S. Shashkin, D. A. Vinokurov, A. V. Lyutetski, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, D. A. Veselov, K. V. Bakhvalov, and I. S. Tarasov, Semiconductors 46, 1211 (2012).

    Article  ADS  Google Scholar 

  10. N. A. Pikhtin, S. O. Slipchenko, I. S. Shashkin, M. A. Ladugin, A. A. Marmalyuk, A. A. Podoskin, and I. S. Tarasov, Semiconductors 44, 1365 (2010).

    Article  ADS  Google Scholar 

  11. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, Electron. Lett. 40, 1413 (2004).

    Article  Google Scholar 

  12. P. V. Bulaev, V. A. Kapitonov, A. V. Lyutetski, A. A. Marmalyuk, D. B. Nikitin, D. N. Nikolaev, A. A. Padalitsa, N. A. Pikhtin, A. D. Bondarev, I. D. Zalevski, and I. S. Tarasov, Semiconductors 36, 1065 (2002).

    Article  ADS  Google Scholar 

  13. Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Semiconductors 45, 1494 (2011).

    Article  ADS  Google Scholar 

  14. M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 (1991).

    Article  ADS  Google Scholar 

  15. Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Quantum Electron. 46, 428 (2013).

    Article  ADS  Google Scholar 

  16. L. V. Asryan, Quantum Electron. 35, 1117 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Pikhtin.

Additional information

Original Russian Text © N.A. Pikhtin, A.V. Lyutetskiy, D.N. Nikolaev, S.O. Slipchenko, Z.N. Sokolova, V.V. Shamakhov, I.S. Shashkin, A.D. Bondarev, L.S. Vavilova, I.S. Tarasov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1377–1382.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikhtin, N.A., Lyutetskiy, A.V., Nikolaev, D.N. et al. On the temperature delocalization of carriers in GaAs/AlGaAs/InGaAs quantum-well heterostructures. Semiconductors 48, 1342–1347 (2014). https://doi.org/10.1134/S1063782614100236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100236

Keywords

Navigation