Skip to main content
Log in

Charge transport in Si-SiO2 and Si-TiO2 nanocomposite structures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The experimental data on dispersed Si-SiO2 and Si-TiO2 nanocomposite structures different in terms of physical, chemical, and insulator properties of oxide components are reported. The parameters of the nanocomposite structures are studied by FTIR spectroscopy and impedance spectroscopy. It is shown that, in such structures, the mechanisms of charge-carrier transport are defined by the properties of Si nanocrystallites and the corresponding oxide as well as by interaction processes at interfaces between grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bettotti, M. Cazzanelli, L. D. Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, J. Phys.: Condens. Matter. 14, 8253 (2002).

    ADS  Google Scholar 

  2. L. Pavesi, Mater. Today 8, 18 (2005).

    Article  Google Scholar 

  3. X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, Phys. Rev. B 72, 195313 (2005).

    Article  ADS  Google Scholar 

  4. K. Seino, F. Bechstedt, and P. Kroll, Nanotechnology 20, 135702 (2009).

    Article  ADS  Google Scholar 

  5. A. Yu. Karlash, Yu. E. Zakharko, V. A. Skryshevsky, A. I. Tsiganova, and G. V. Kuznetsov, J. Phys. D: Appl. Phys. 43, 335405 (2010).

    Article  Google Scholar 

  6. L. Miao, P. Jin, K. Kaneko, et al., Mater. Chem. Phys. 114, 217 (2009).

    Article  Google Scholar 

  7. S. I. Rembeza, N. N. Kosheleva, E. S. Rembeza, T. V. Svistova, Yu. V. Shmatova, and Gang Xu, Semiconductors 45, 612 (2011).

    ADS  Google Scholar 

  8. M. R. Fedotova, G. A. Voronov, E. Y. Emel’yanova, N. I. Radishevskaya, and O. V. Vodyankina, J. Phys. Chem. 83, 1371 (2009).

    Google Scholar 

  9. A. Y. Karlach, G. V. Kuznetsov, S. V. Litvinenko, Y. S. Milovanov, and V. A. Skryshevsky, Semiconductors 44, 1342 (2010).

    Article  ADS  Google Scholar 

  10. A. U. Limaye and J. J. Helble, J. Am. Ceram. Soc. 86, 273 (2003).

    Article  Google Scholar 

  11. I. Ya. Sulim, N. V. Borisenko, and V. M. Gun’ko, Khim. Fiz. Tekhnol. Poverkhn. 14, 391 (2008).

    Google Scholar 

  12. A. A. Gorban, S. A. Synyakyna, S. V. Gorban, I. A. Danilenko, and T. E. Konstantinova, Nanosystems, Nanomater. Nanotechnol. 7, 1195 (2009).

    Google Scholar 

  13. A. V. Ershov, D. I. Tetelbaum, I. A. Chugrov, A. I. Mashin, A. N. Mikhaylov, A. V. Nezhdanov, A. A. Ershov, and I. A. Karabanova, Semiconductor 45, 747 (2011).

    Article  Google Scholar 

  14. G. Cantele, E. Degoli, E. Luppi, R. Magri, D. Ninno, O. Bisi, S. Ossicini, and G. Iadonisi, Phys. Status Solidi C 2, 3263 (2005).

    Article  ADS  Google Scholar 

  15. M. Nogami, R. Nagao, and Cong Wong, J. Phys. Chem. B 102, 5772 (1998).

    Article  Google Scholar 

  16. Chao Cao, Yao He, J. Torras, E. Deumens, S. B. Trickey, and Hai-Ping Cheng, J. Chem. Phys. 126, 211 (2007).

    Google Scholar 

  17. L. Glasser, Chem. Rev. 75, 21 (1975).

    Article  Google Scholar 

  18. Impedance Spectroscopy: Theory, Experiment, and Applications, Ed. by E. Barsoukov and J. R. Macdonald (Wiley, New York, 2005).

    Google Scholar 

  19. A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 2001).

    Google Scholar 

  20. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004).

    Google Scholar 

  21. V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, New York, 2003).

    Book  Google Scholar 

  22. V. Litvinenko, S. Alekseev, V. Lysenko, A. Venturello, F. Geobaldo, L. Gulina, G. Kuznetsov, V. Tolstoy, V. Skryshevsky, E. Garrone, and D. Barbier, Int. J. Hydrogen Energy 35, 6773 (2010).

    Article  Google Scholar 

  23. Th. Dittrich, V. Zinchuk, V. Skryshevskyy, I. Urban, and O. Hilt, J. Appl. Phys. 98, 104501 (2005).

    Article  ADS  Google Scholar 

  24. I. V. Antonova, V. A. Skuratov, J. Jedrzejewski, and I. Balberg, Semiconductors 44, 501 (2010).

    Article  Google Scholar 

  25. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

    Article  ADS  Google Scholar 

  26. R. N. Pletnev et al., Hydrated Oxides of Elements of IV and V Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  27. R. Tromp, G. W. Rubloff, P. Balk, and F. K. LeGoues, Phys. Rev. Lett. 55, 2332 (1985).

    Article  ADS  Google Scholar 

  28. A. Zenkevich, Yu. Lebedinski, G. Scarel, M. Fanciulli, A. Baturin, and N. Lubovin, Microelectron. Reliab. 47, 657 (2007).

    Article  Google Scholar 

  29. N. Daldosso, G. Das, S. Larcheri, et al., J. Appl. Phys. 101, 113510 (2007).

    Article  ADS  Google Scholar 

  30. A. I. Gusev, Nanomateries, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  31. Mao-Hua Du, A. Kolchin, and Hai-Ping Chenga, J. Chem. Phys. 119, 6418 (2003).

    Article  ADS  Google Scholar 

  32. E. A. Agafonova, M. N. Martyshov, P. A. Forsh, V. Yu. Timoshenko, and P. K. Kashkarov, Semiconductors 44, 367 (2010).

    Article  Google Scholar 

  33. N. N. Kononov, S. G. Dorofeev, A. A. Ishchenko, R. A. Mironov, V. G. Plotnichenko, and E. M. Dianov, Semiconductors 45, 1068 (2011).

    Article  ADS  Google Scholar 

  34. N. A. Poklonski, N. I. Gorbachuk, and D. Aleinikova, Phys. Solid State 53, 462 (2011).

    Article  ADS  Google Scholar 

  35. V. G. Golubev, L. E. Morozova, A. B. Pevtsov, and N. A. Feoktistov, Semiconductors 33, 75 (1999).

    Article  ADS  Google Scholar 

  36. E. N. Luk’yanova, S. N. Kozlov, V. M. Demidovich, and G. B. Demidovich, Tech. Phys. Lett. 27, 441 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Milovanov.

Additional information

Original Russian Text © Yu.S. Milovanov, G.V. Kuznetsov, V.A. Skryshevsky, S.M. Stupan, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1370–1376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovanov, Y.S., Kuznetsov, G.V., Skryshevsky, V.A. et al. Charge transport in Si-SiO2 and Si-TiO2 nanocomposite structures. Semiconductors 48, 1335–1341 (2014). https://doi.org/10.1134/S1063782614100200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100200

Keywords

Navigation