Skip to main content
Log in

“Exciton” photoconductivity in GaAs crystals

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The spectral dependence of the photoconductivity in epitaxial GaAs of high purity and crystalline perfection grown on a semiinsulating GaAs substrate are measured at 1.7 and 77 K and analyzed theoretically. The developed theory of photoconductivity spectra takes into consideration the analytical shape of the exciton absorption edge in semiconductor crystals, the transport of photogenerated charge carriers, the finite thickness of the crystal, and the presence of surface recombination centers. It is shown that, when the excitation photon energy is lower than the band gap, the photoconductivity spectrum is determined by elementary excitations of the exciton type, while at higher excitation energies the spectrum is determined by surface states as well as by processes associated with optical-phonon emission. It is found that, in the samples under study, the probability of the direct formation of excitons upon the absorption of light can be comparable to the probability of their formation from a thermalized electron-hole gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rose, Concept in Photoconductivity and Allied Problems (Wiley, New York, 1963; Mir, Moscow, 1996).

    Google Scholar 

  2. R. H. Bube, Photoconductivity of Solids (Wiley, New York, London, 1960; Inostr. Liter., Moscow, 1962).

    MATH  Google Scholar 

  3. T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959; Mir, Moscow, 1970).

    Google Scholar 

  4. J. I. Frenkel, Phys. Rev. 37, 17 (1931); Phys. Rev. 37, 1276 (1931).

    Article  MATH  ADS  Google Scholar 

  5. Yu. G. Kusraev and R. P. Seisyan, in Proceedings of the Peterburg-Leningrad School of Electronics (SPbG-ETU LETI, St.-Petersburg, 2013), p. 234.

    Google Scholar 

  6. A. A. Klochikhin, S. A. Permogorov, and A. N. Reznitskii, Sov. Phys. JETP 44, 1176 (1976).

    ADS  Google Scholar 

  7. T. C. Damen, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham, and J. M. Kuo, Phys. Rev. B 42, 7434 (1990).

    Article  ADS  Google Scholar 

  8. T. Amand, J. Barrau, X. Marie, N. Lauret, B. Dareys, M. Brousseau, and F. Laruelle, Phys. Rev. B 47, 7155 (1993).

    Article  ADS  Google Scholar 

  9. F. Clerot, B. Deveaud, A. Chomette, A. Regreny, and B. Sermage, Phys. Rev. B 41, 5756 (1990).

    Article  ADS  Google Scholar 

  10. V. A. Kiselev, B. V. Novikov, and A. E. Cherednichenko, Exiton Spectroscopy of the Near-Surface Region of Semiconductors (SPb. Gos. Univ., St.-Petersburg, 2003) [in Russian].

    Google Scholar 

  11. A. S. Batyrev, R. A. Bisengaliev, N. V. Zhukova, B. V. Novikov, and E. I. Chityrov, Phys. Solid State 45, 2060 (2003).

    Article  ADS  Google Scholar 

  12. E. F. Gross and B. V. Novikov, Sov. Phys. Solid State 1, 321 (1959).

    Google Scholar 

  13. Physics and Chemistry of A 2 B 6 Compounds, Ed. by S. A. Medvedev (Mir, Moscow, 1970) [in Russian].

    Google Scholar 

  14. S. Permogorov, Phys. Status Solidi B 68, 9 (1975).

    Article  ADS  Google Scholar 

  15. S. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Schwendimann, Phys. Rev. B 55, 1333 (1997).

    Article  ADS  Google Scholar 

  16. P. E. Selbmann, M. Gulia, F. Rossi, E. Molinari, and P. Lugli, Phys. Rev. B 54, 4660 (1996).

    Article  ADS  Google Scholar 

  17. J. Szczytko, L. Kappei, J. Berney, F. Morier-Gehound, M. T. Portella-Oberli, and B. Deveaud, Phys. Rev. Lett. 93, 137401 (2004).

    Article  ADS  Google Scholar 

  18. R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla, Phys. Rev. B 79, 045320 (2009).

    Article  ADS  Google Scholar 

  19. K. Kowalik-Seidl, X. P. Vögele, F. Seilmeier, D. Schuh, W. Wegscheider, A. W. Holleitner, and J. P. Kotthaus, Phys. Rev. B 83, 081307(R) (2011).

    Article  ADS  Google Scholar 

  20. T. Moss, G. Burrel, and B. Ellis, Semiconductor OptoElectronics (Butterworth, London, 1973; Mir, Moscow, 1976), p. 142.

    Google Scholar 

  21. G. N. Aliev, O. S. Koshchug, and R. P. Seisyan, Phys. Solid State 36, 203 (1994).

    ADS  Google Scholar 

  22. R. J. Elliott, Phys. Rev. 108, 1384 (1957).

    Article  ADS  Google Scholar 

  23. M. Ueta, H. Kanazaki, K. Kobayashi, Y. Toyazawa, and E. Hanamura, Excitonic Processes in Solids, Springer Ser. in Solid-State Sciences, vol. 60 (Springer, Berlin, Heidelberg, 1986), p. 228.

    Google Scholar 

  24. H. J. Stocker, H. Levinstain, and C. R. Stannard, Phys. Rev. 150, 613 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Averkiev.

Additional information

Original Russian Text © N.S. Averkiev, D.A. Zaitsev, G.M. Savchenko, R.P. Seisyan, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1311–1316.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averkiev, N.S., Zaitsev, D.A., Savchenko, G.M. et al. “Exciton” photoconductivity in GaAs crystals. Semiconductors 48, 1275–1280 (2014). https://doi.org/10.1134/S1063782614100030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100030

Keywords

Navigation