Skip to main content
Log in

Tunneling transport through passivated CdS nanocrystal arrays grown by the Langmuir-Blodgett method

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Tunneling electron transport through CdS nanocrystal arrays fabricated by the Langmuir-Blodgett method are studied by scanning electron spectroscopy. The effect of the matrix-annealing atmosphere on tunneling transport through the nanocrystal arrays is studied. Electron capture at traps in the case of nanocrystals annealed in vacuum is detected by tunneling current-voltage characteristics analyzed using a model relating the data of tunneling spectroscopy, photoluminescence, and quantum-mechanical calculation. Analysis shows that the nanocrystal surface is passivated by an ammonia monolayer upon annealing in an ammonia atmosphere. It is found that the substrate and surrounding non-passivated nanocrystals have an effect on the electron polarization energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Jones, B. H. Hu, C. H. Yang, M. J. Yang, and Y. B. Lyanda-Geller, Appl. Phys. Lett. 88, 192102 (2006).

    Article  ADS  Google Scholar 

  2. P. Weinmann, C. Zimmermann, T. W. Schlereth, C. Schneider, S. Hoefling, M. Kamp, and A. Forchel, IEEE J. Sel. Top. Quantum. Electron. 15, 3 (2009).

    Article  Google Scholar 

  3. N. Singh, R. M. Mehra, A. Kapoor, and T. Soga, J. Renewable Sustainable Energy 4, 013110 (2012).

    Article  Google Scholar 

  4. C. M. Chou, H. T. Cho, V. K. Hsiao, K. T. Yong, and W. C. Law, Nanoscale Res. Lett. 7, 291 (2012).

    Article  ADS  Google Scholar 

  5. S. Michaels, A. Pawlis, C. Arens, M. Panfilova, A. Zrenner, D. Schikora, and K. Lischka, Microelectron. J. 40, 215 (2009).

    Article  Google Scholar 

  6. D. Y. Protasov, W. B. Jian, K. A. Svit, T. A. Duda, S. A. Teys, A. S. Kozhuhov, L. L. Sveshnikova, and K. S. Zhuravlev, J. Phys. Chem. C 115, 41 (2011).

    Article  Google Scholar 

  7. M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, H. Jaschinski, and U. Woggon, Phys. Status Solidi B 224, 393 (2001).

    Article  ADS  Google Scholar 

  8. Y. C. Ou, S. F. Chang, and W. B. Jian, Nanotechnology 20, 285401 (2009).

    Article  Google Scholar 

  9. B. Marsen, M. Lonfat, P. Scheier, and K. Sattler, Phys. Rev. B 62, 6892 (2000).

    Article  ADS  Google Scholar 

  10. O. Millo, D. Katz, Y. W. Cao, and U. Banin, Phys. Rev. B 61, 16733 (2000).

    Article  ADS  Google Scholar 

  11. S. Ogawa, F. F. Fan, and A. J. Bard, J. Phys. Chem. 99, 11182 (1995).

    Article  Google Scholar 

  12. I. Kazuto, T. Kenshi, et al., J. Vac. Sci. Technol. B 10, 5 (1992).

    Google Scholar 

  13. R. Stomp, Y. Miyahara, S. Schaer, Q. Sun, H. Guo, and P. Grutter, Phys. Rev. Lett. 94, 056802 (2005).

    Article  ADS  Google Scholar 

  14. C. H. Cho, B. H. Kim, and S. Park, Appl. Phys. Lett. 89, 013116 (2006).

    Article  ADS  Google Scholar 

  15. Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 65, 165334 (2002).

    Article  ADS  Google Scholar 

  16. E. P. A. M. Bakkers, Z. Hens, A. Zunger, A. France- schetti, L. P. Kouwenhoven, L. Gurevich, and D. Van- maekelbergh, Nano Lett. 1, 551 (2001).

    Article  ADS  Google Scholar 

  17. M. R. Hummon, A. J. Stolenwerk, V. Narayanamurti, P. O. Anikeeva, M. J. Panzer, V. Wood, and V. Bulovic, Phys. Rev. B 81, 115439 (2010).

    Article  ADS  Google Scholar 

  18. V. Erokhin, P. Facci, S. Carrara, and C. Nicolini, J. Phys. D: Appl. Phys. 28, 2534 (1995).

    Article  ADS  Google Scholar 

  19. E. A. Bagaev, K. S. Zhuravlev, L. L. Sveshnikova, I. A. Badmaeva, S. M. Repinskii, and M. Voelskov, Semiconductors 37, 1321 (2003).

    Article  ADS  Google Scholar 

  20. E. A. Bagaev, K. S. Zhuravlev, L. L. Sveshnikova, and D. V. Shcheglov, Semiconductors 42, 702 (2008).

    Article  ADS  Google Scholar 

  21. M. Simurda, P. Nemec, J. Preclikova, F. Trojanek, T. Miyoshi, K. Kasatani, and P. Maly, Thin Solid Films 503, 65 (2006).

    Article  ADS  Google Scholar 

  22. H. Hasegawa, N. Negoro, S. Kasai, Y. Ishikawa, and H. Fujikuwa, J. Vac. Sci. Technol. B 18, 2100 (2000).

    Article  Google Scholar 

  23. L. Jdira, P. Liljeroth, E. Stoffels, D. Vanmaekelbergh, and S. Speller, Phys. Rev. B 73, 115305 (2006).

    Article  ADS  Google Scholar 

  24. M. Braun and L. Pilon, Thin Solid Films 496, 505 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Svit.

Additional information

Original Russian Text © K.A. Svit, D.Yu. Protasov, L.L. Sveshnikova, A.K. Shestakov, S.A. Teys, K.S. Zhuravlev, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 9, pp. 1237–1242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svit, K.A., Protasov, D.Y., Sveshnikova, L.L. et al. Tunneling transport through passivated CdS nanocrystal arrays grown by the Langmuir-Blodgett method. Semiconductors 48, 1205–1210 (2014). https://doi.org/10.1134/S1063782614090206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614090206

Keywords

Navigation