Skip to main content
Log in

Effect of ion-beam treatment during reactive radio-frequency magnetron sputtering on the concentration and mobility of charge carriers in ITO films

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is shown that ion-beam treatment during the deposition of ITO films by reactive radio-frequency magnetron sputtering induces a decrease in the resistivity of the films even at room temperature. Variations in the Hall mobility and concentration of charge carriers are studied in relation to the condensation temperature and ion-beam treatment current. The resistivity decreases mainly because of an increase in the concentration of majority charge carriers. It is inferred that the change in the concentration of charge carriers is associated with {ie1237-1} defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Rembeza, P. E. Voronov, B. M. Sinel’nikov, and E. S. Rembeza, Semiconductors 45, 603 (2011).

    Article  ADS  Google Scholar 

  2. A. I. Bazhin, A. N. Trotsan, S. V. Chertopalov, A. A. Stipanenko, and V. I. Stupak, Fiz. Inzhen. Poverkhn. (Khar’kov) 10, 342 (2012).

    Google Scholar 

  3. V. V. Naumov, V. F. Bochkarev, A. A. Goryachev, A. S. Kunitsyn, E. I. Il’yashenko, P. E. Goa, and T. Kh. Iokhansen, Tech. Phys. 49, 426 (2004).

    Article  Google Scholar 

  4. S. H. Mohamed, F. M. El-Hossary, G. A. Gamal, and M. M. Kahlid, Acta Phys. Polon. A 115, 704 (2009).

    Google Scholar 

  5. V. M. Vetoshkin, R. M. Zakirova, and P. N. Krylov, Vakuum. Tekh. Tekhnol. 21, 57 (2011).

    Google Scholar 

  6. L. P. Pavlov, Measurements on the Parameters of Semiconductor Materials (Vyssh. Shkola, Moscow, 1987) [in Russian].

    Google Scholar 

  7. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-Ray and Electro-Optical Analysis (MISIS, Moscow, 2002) [in Russian].

    Google Scholar 

  8. P. N. Krylov, R. M. Zakirova, and I. V. Fedotova, Semiconductors 47, 1412 (2013).

    Article  Google Scholar 

  9. H. Y. Yeom, N. Popovich, E. Chason, and D. C. Paine, Thin Solid Films 411, 17 (2002).

    Article  ADS  Google Scholar 

  10. G. V. Yurchenko, Vopr. At. Nauki Tekh. 5, 97 (2000).

    Google Scholar 

  11. J.-H. Kim, J.-H. Lee, Y.-W. Heo, J.-J. Kim, and J.-O. Park, J. Electroceram. 23, 169 (2009).

    Article  Google Scholar 

  12. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, J. Phys. D: Appl. Phys. 43, 055402 (2010).

    Article  ADS  Google Scholar 

  13. D. Kim and S. Kim, Thin Solid Films 408, 218 (2002).

    Article  ADS  Google Scholar 

  14. C. Warmsingh, Y. Yoshida, D. Readey, J. Perkins, P. Parilla, C. Teplin, T. Kaydanova, J. Alleman, L. Gedvilas, B. Keyes, T. Gessert, T. Coutts, and D. Ginley, Conf. Paper NREL/CP-520-33596 (Denver, Colorado, USA, 2003).

    Google Scholar 

  15. J. W. Bae, J. S. Kim, and G. Y. Yeom, Nucl. Instrum. Methods Phys. Res. B 178, 311 (2001).

    Article  ADS  Google Scholar 

  16. L.-J. Meng, J. Gao, V. Teixeira, and M. P. dos Santos, Phys. Status Solidi A 205, 1961 (2008).

    Article  ADS  Google Scholar 

  17. L.-J. Meng, J. Gao, M. P. dos Santos, X. Wang, and T. Wang, Thin Solid Films 516, 1365 (2008).

    Article  ADS  Google Scholar 

  18. L.-J. Meng, J. Gao, R. A. Silva, and S. Song, Thin Solid Films 516, 5454 (2008).

    Article  ADS  Google Scholar 

  19. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Superlatt. Microstruct. 48, 458 (2010).

    Article  ADS  Google Scholar 

  20. D. H. Zhang and H. L. Ma, Appl. Phys. A 62, 487 (1996).

    Article  ADS  Google Scholar 

  21. K. Füchsel, U. Schulz, N. Kaiser, and A. Tünnermann, Proc. SPIE 7101, 71010O (2008).

    Article  Google Scholar 

  22. P. N. Krylov, R. M. Zakirova, I. V. Fedotova, and F. Z. Gil’mutdinov, Semiconductors 47, 870 (2013).

    Article  ADS  Google Scholar 

  23. Z. Qiao, Doctoral Dissertation (Hebei, V. R. China, 2003).

  24. H. Guangzong, X. Changxing, and Y. Xilin, Proc. SPIE 6831, 683111 (2007).

    Article  Google Scholar 

  25. N. Balasubramanian and A. Subrahmanyam, J. Phys. D: Appl. Phys. 22, 206 (1989).

    Article  ADS  Google Scholar 

  26. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, Materials 3, 4892 (2010).

    Article  ADS  Google Scholar 

  27. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys. 83, 2631 (1998).

    Article  ADS  Google Scholar 

  28. O. Warschkow, D. E. Ellis, G. B. Gonsalez, and T. O. Mason, J. Am. Ceram. Soc. 86, 1700 (2003).

    Article  Google Scholar 

  29. D. E. Proffit, D. B. Buchholz, R. P. H. Chang, M. J. Bedzyk, T. O. Mason, and Q. Ma, J. Appl. Phys. 106, 113524 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krylov.

Additional information

Original Russian Text © P.N. Krylov, R.M. Zakirova, I.V. Fedotova, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 9, pp. 1269–1273.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, P.N., Zakirova, R.M. & Fedotova, I.V. Effect of ion-beam treatment during reactive radio-frequency magnetron sputtering on the concentration and mobility of charge carriers in ITO films. Semiconductors 48, 1237–1241 (2014). https://doi.org/10.1134/S1063782614090139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614090139

Keywords

Navigation