Skip to main content
Log in

Application of photoluminescence spectroscopy to studies of In0.38Al0.62As/In0.38Ga0.62As/GaAs metamorphic nanoheterostructures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studies of the surface morphology, electrical parameters, and photoluminescence properties of In0.38Al0.62As/In0.38Ga0.62As/In0.38Al0.62As metamorphic nanoheterostructures on GaAs substrates are reported. Some micron-sized defects oriented along the [011] and \([0\bar 11]\) directions and corresponding to regions of outcropping of stacking faults are detected on the surface of some heterostructures. The Hall mobility and optical properties of the samples correlate with the surface defect density. In the photoluminescence spectra, four emission bands corresponding to the recombination of charge carriers in the InGaAs quantum well (1–1.2 eV), the InAlAs metamorphic buffer (1.8–1.9 eV), the GaAs/AlGaAs superlattice at the buffer-substrate interface, and the GaAs substrate are detected. On the basis of experimentally recorded spectra and self-consistent calculations of the band diagram of the structures, the compositions of the alloy constituents of the heterostructures are established and the technological variations in the compositions in the series of samples are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-H. Kim, B. Brar, and J. A. del Alamo, in Proceedings of the IEEE International Electron Device Meeting (Washington DC, 2011), p. 13.6.1.

    Google Scholar 

  2. W. E. Hoke, T, D. Kennedy, A. Toraby, C. S. Whelan, et al., J. Cryst. Growth 251, 804 (2003).

    Article  ADS  Google Scholar 

  3. S. Bollaert, Y. Cordier, M. Zaknoune, et al., Solid State Electron. 44, 1021 (2000).

    Article  ADS  Google Scholar 

  4. M.-S. Son, B.-H. Lee, M.-R. Kim, S.-D. Kim, et al., J. Korean Phys. Soc. 44, 408 (2004).

    Google Scholar 

  5. W. E. Hoke, T. D. Kennedy, A. Toraby, C. S. Whelan, P. F. Marsh, R. E. Leoni, C. Xu, and K. C. Hsien, J. Cryst. Growth 251, 827 (2003).

    Article  ADS  Google Scholar 

  6. J. H. Kim, H.-S. Yoon, J.-H. Lee, et al., Solid State Electron. 46, 69 (2002).

    Article  ADS  Google Scholar 

  7. S.-J. Yu, W.-C. Hsu, Y.-J. Chen, and C.-L. Wu, Solid State Electron. 50, 291 (2006).

    Article  ADS  Google Scholar 

  8. D. Lee, M. S. Park, Z. Tang, H. Luo, R. Beresford, et al., J. Appl. Phys. 101, 063523 (2007).

    Article  ADS  Google Scholar 

  9. S. Mendach, C. M. Hu, Ch. Heyn, et al., Physica E 13, 1204 (2002).

    Article  ADS  Google Scholar 

  10. Y. Jeong, H. Choi, and T. Suzuki, J. Cryst. Growth 301–302, 235 (2007).

    Article  Google Scholar 

  11. J. M. Gilperez, J. L. Sanchez Rojas, E. Munoz, et al., J. Appl. Phys. 76, 5931 (1994).

    Article  ADS  Google Scholar 

  12. S. K. Brierley, A. Torabi, and P. S. Lyman, J. Appl. Phys. 85, 914 (1999).

    Article  ADS  Google Scholar 

  13. D. Y. Lin, M. C. Wu, H. J. Lin, and J. S. Wu, Physica E 40, 1757 (2008).

    Article  ADS  Google Scholar 

  14. G. L. Zhou, W. Liu, and M. E. Lin, J. Cryst. Growth 227–228, 218 (2001).

    Article  Google Scholar 

  15. H. Brugger, H. Mussig, C. Wolk, et al., Appl. Phys. Lett. 59, 2739 (1991).

    Article  ADS  Google Scholar 

  16. A. Dodabalapur, V. P. Kesan, D. R. Hinson, et al., Appl. Phys. Lett. 54, 1675 (1989).

    Article  ADS  Google Scholar 

  17. N. G. Yaremenko, G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, M. V. Karachevtseva, and V. A. Strakhov, J. Commun. Technol. Electron. 58, 243 (2013).

    Article  Google Scholar 

  18. X. Z. Shang, J. Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid State Electron. 51, 85 (2007).

    Article  ADS  Google Scholar 

  19. T. Mishima, M. Kudo, J. Kasai, K. Higuchi, and T. Nakamura, J. Cryst. Growth 201–202, 271 (1999).

    Article  Google Scholar 

  20. X. Z. Shang, S. D. Wu, C. Liu, W. X. Wang, L. W. Guo, Q. Huang, and J. M. Zhou, J. Phys. D: Appl. Phys. 39, 1800 (2006).

    Article  ADS  Google Scholar 

  21. H. Choi, J. Cho, and M. Jeon, J. Korean Phys. Soc. 54, 643 (2009).

    Article  ADS  Google Scholar 

  22. K. E. Lee and E. A. Fitzgerald, J. Cryst. Growth 312, 250 (2010).

    Article  ADS  Google Scholar 

  23. C.-H. Chan, C.-H. Ho, M.-K. Chen, Y.-S. Lin, et al., Thin Solid Films 529, 217 (2013).

    Article  ADS  Google Scholar 

  24. J. S. Wu, C. C. Hung, C. T. Lu, and D. Y. Lin, Physica E 42, 1212 (2010).

    Article  ADS  Google Scholar 

  25. Y. Song, S. Wang, X. Cao, Z. Lai, and M. Sadeghi, J. Cryst. Growth 323, 21 (2011).

    Article  ADS  Google Scholar 

  26. G. B. Galiev, I. S. Vasil’evskii, S. S. Pushkarev, E. A. Klimov, R. M. Imamov, P. A. Buffat, B. Dwir, and E. I. Suvorova, J. Cryst. Growth 366, 55 (2013).

    Article  ADS  Google Scholar 

  27. H. Choi, Y. Jeong, J. Cho, and M. H. Jeon, J. Cryst. Growth 311, 1091 (2009).

    Article  ADS  Google Scholar 

  28. F. Romanato, E. Napolitani, A. Carnera, A. V. Drigo, L. Lazzarini, et al., J. Appl. Phys. 86, 4748 (1999).

    Article  ADS  Google Scholar 

  29. Y. Cordier, P. Lorenzini, J.-V. Chauveau, D. Ferre, Y. Androussi, J. Di Persio, D. Vignaud, and J.-L. Codron, J. Cryst. Growth 251, 822 (2003).

    Article  ADS  Google Scholar 

  30. M. Haupt, K. Köhler, P. Ganser, S. Emminger, and S. Muller, Appl. Phys. Lett. 69, 412 (1996).

    Article  ADS  Google Scholar 

  31. H.-L. Gao, Y.-P. Zeng, B.-Q. Wang, Z.-P. Zhu, and Z.-G. Wang, Chin. Phys. B 17, 1119 (2008).

    Article  ADS  Google Scholar 

  32. G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, V. G. Mokerov, and A. A. Cherechukin, Semiconductors 40, 1445 (2006).

    Article  ADS  Google Scholar 

  33. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  34. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009), p. 157.

    Book  Google Scholar 

  35. V. G. Mokerov, Yu. V. Fedorov, A. V. Guk, N. G. Yaremenko, and V. A. Strakhov, Dokl. Phys. 43, 527 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Galiev.

Additional information

Original Russian Text © G.B. Galiev, I.S. Vasil’evskii, E.A. Klimov, A.N. Klochkov, D.V. Lavruhin, S.S. Pushkarev, P.P. Maltsev, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 7, pp. 909–916.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, G.B., Vasil’evskii, I.S., Klimov, E.A. et al. Application of photoluminescence spectroscopy to studies of In0.38Al0.62As/In0.38Ga0.62As/GaAs metamorphic nanoheterostructures. Semiconductors 48, 883–890 (2014). https://doi.org/10.1134/S1063782614070070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614070070

Keywords

Navigation