Skip to main content
Log in

Prospects for the development of high-power field-effect transistors based on heterostructures with donor-acceptor doping

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We report the first results on the development of high-power field-effect transistors on gallium-arsenide heterosrtuctures with a quantum well and additional potential barriers, formed from layers with different doping types, optimized to reduce transverse spatial electron transport and enhance quantum confinement. The transistors yield a doubled output power at a trapezoidal gate length of 0.4–0.5 μm and a total gate width of 0.8 mm at a frequency of 10 GHz in the continuous mode of operation. The gain exceeds 9.5 dB at a specific output power above 1.6 W/mm and a power-added efficiency of up to 50%. Prospects for the development of such devices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kishchinskii, in Proceedings of the 19th International Crimean Conference on SHF Techniques and Telecommunication Technologies KryMiko-2009 (Veber, Sevastopol’, 2009), p. 11.

    Google Scholar 

  2. A. A. Kal’fa and A. S. Tager, Elektron. Tekh., Ser. 1: Elektron. SVCh 12(348), 26 (1982).

    Google Scholar 

  3. C. Gaquiere, J. Grunenutt, D. Jambon, E. Dolos, D. Ducatteau, M. Werquin, D. Treron, and P. Fellon, IEEE Electron. Dev. Lett. 26, 533 (2005).

    Article  ADS  Google Scholar 

  4. M. V. Baeta Moreira, M. A. Py, M. Gailhanou, and M. Ilegems, J. Vac. Sci. Technol. B 10, 103 (1992).

    Article  Google Scholar 

  5. C. S. Wu, F. Ren, S. J. Pearton, M. Hu, C. K. Pao, and R. F. Wang, IEEE Trans. Electron. Dev. 42, 1419 (1995).

    Article  ADS  Google Scholar 

  6. I. S. Vasilevski, G. B. Galiev, E. A. Klimov, V. G. Mokerov, S. S. Shirokov, R. P. Imamov, and I. A. Subbotin, Semiconductors 42, 1084 (2008).

    Article  ADS  Google Scholar 

  7. L. J. Kushner, Microwave J., 87 (1990).

    Google Scholar 

  8. TriQuint Semiconductor, Advance Product Information (2005). www.triquint.com.

  9. N. A. Kuvshinova, V. G. Lapin, V. M. Lukashin, and K. I. Petrov, Radiotekhnika 11, 90 (2011).

    Google Scholar 

  10. A. V. Klimova, V. M. Lukashin, and A. B. Pashkovskii, Semiconductors 43, 105 (2009).

    Article  ADS  Google Scholar 

  11. A. K. Saxena, J. Phys. C 13, 4322 (1980).

    Article  ADS  Google Scholar 

  12. Z. S. Gribnikov and O. E. Raichev, Sov. Phys. Semicond. 23, 1344 (1989).

    Google Scholar 

  13. J. Zou, Z. Abid, H. Dong, and A. Gopinath, Appl. Phys. Lett. 58, 2411 (1991).

    Article  ADS  Google Scholar 

  14. J. Zou, H. Dong, A. Gopinath, and M. S. Shur, IEEE Trans. Electron Dev. 39, 250 (1992).

    Article  ADS  Google Scholar 

  15. RF Patent No. 80069, Request No. 2008133793 (2008).

  16. M. Shur, GaAs Devices and Circuits (Plenum, New York, London, 1986; Mir, Moscow, 1991), p. 312.

    Google Scholar 

  17. A. A. Kal’fa and A. B. Pashkovskii, Sov. Phys. Semicond. 22, 1325 (1988).

    Google Scholar 

  18. N. A. Banov and V. I. Ryzhii, Mikroelektronika 15, 490 (1986).

    Google Scholar 

  19. V. A. Nikolaeva, V. D. Pishchalko, V. I. Ryzhii, G. Yu. Khrenov, and B. N. Chetverushkin, Mikroelektronika 17, 504 (1988).

    Google Scholar 

  20. V. E. Chaika, Tekh. Elektrodinam. 3, 85 (1985).

    Google Scholar 

  21. Ya. B. Martynov and A. S. Tager, Elektron. Tekh., Ser. 1: Elektron. SVCh 7(413), 14 (1988).

    Google Scholar 

  22. G. Z. Garber, J. Commun. Technol. Electron. 48, 114 (2003).

    Google Scholar 

  23. V. G. Lapin, A. M. Temnov, K. I. Petrov, and V. A. Krasnik, in Proceedings of the GaAs2000 Conference, Oct. 2–3, 2000.

  24. V. G. Lapin, V. A. Krasnik, K. I. Petrov, and A. M. Temnov, in Proceedings of the 11th International Crimean Conference on SHF Techniques and Telecommunication Technologies (Sevastopol’, Krym, 2001), p. 135.

    Google Scholar 

  25. K. S. Zhuravlev, V. G. Lapin, V. M. Lukashin, A. B. Pashkovskii, A. B. Sokolov, and A. I. Toropov, Elektron. Tekh., Ser. 1: SVCh-Tekh. 1(512), 55 (2012).

    Google Scholar 

  26. V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, and A. B. Sokolov, Tech. Phys. Lett. 38, 819 (2012).

    Article  ADS  Google Scholar 

  27. Y.-E. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, V. K. Mishra, and P. Parikh, IEEE Electron. Dev. Lett. 25, 117 (2004).

    Article  ADS  Google Scholar 

  28. RF Patent No. 2463685, Request No. 2011123071 (2011).

  29. A. A. Vorob’ev and A. V. Galdetskii, Elektron. Tekh., Ser. 1: SVCh-Tekh. 3(510), 37 (2011).

    Google Scholar 

  30. IEEE Electron Dev. Lett. 33, 1258 (2012).

  31. I. A. Baranov, A. V. Klimova, L. V. Manchenko, O. I. Obrezan, and A. B. Pashkovskii, Radiotekhnika, No. 3, 34 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Zhuravlev.

Additional information

Original Russian Text © V.M. Lukashin, A.B. Pashkovskii, K.S. Zhuravlev, A.I. Toropov, V.G. Lapin, E.I. Golant, A.A. Kapralova, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 5, pp. 684–692.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashin, V.M., Pashkovskii, A.B., Zhuravlev, K.S. et al. Prospects for the development of high-power field-effect transistors based on heterostructures with donor-acceptor doping. Semiconductors 48, 666–674 (2014). https://doi.org/10.1134/S1063782614050121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614050121

Keywords

Navigation