Skip to main content
Log in

Photoluminescence studies of In0.7Al0.3As/In0.75Ga0.25As/In0.7Al0.3As metamorphic heterostructures on GaAs substrates

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The influence of the design of the metamorphic buffer of In0.7Al0.3As/In0.75Ga0.25As metamorphic nanoheterostructures for high-electron-mobility transistors (HEMTs) on their electrical parameters and photoluminescence properties is studied experimentally. The heterostructures are grown by molecular-beam epitaxy on GaAs (100) substrates with linear or step-graded In x Al1 − x As metamorphic buffers. For the samples with a linear metamorphic buffer, strain-compensated superlattices or inverse steps are incorporated into the buffer. At photon energies ħω in the range 0.6–0.8 eV, the photoluminescence spectra of all of the samples are identical and correspond to transitions from the first and second electron subbands to the heavy-hole band in the In0.75Ga0.25As/In0.7Al0.3As quantum well. It is found that the full width at half-maximum of the corresponding peak is proportional to the two-dimensional electron concentration and the luminescence intensity increases with increasing Hall mobility in the heterostructures. At photon energies ħω in the range 0.8–1.3 eV corresponding to the recombination of charge carriers in the InAlAs barrier region, some features are observed in the photoluminescence spectra. These features are due to the difference between the indium profiles in the smoothing and lower barrier layers of the samples. In turn, the difference arises from the different designs of the metamorphic buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-H. Kim and J. A. del Alamo, IEEE Electron Dev. Lett. 31, 806 (2010).

    Article  ADS  Google Scholar 

  2. D.-H. Kim, B. Brar, and J. A. del Alamo, in Proeedings of the IEEE International Electron Device Meeting (Washington DC, 2011), p. 13.6.1.

    Google Scholar 

  3. G. B. Galiev, S. S. Pushkarev, I. S. Vasil’evski, E. A. Klimov, R. M. Imamov, I. A. Subbotin, E. S. Pavlenko, and A. L. Kvanin, Crystallogr. Rep. 57, 841 (2012).

    Article  ADS  Google Scholar 

  4. G. B. Galiev, I. S. Vasil’evski, S. S. Pushkarev, E. A. Klimov, R. M. Imamov, P. A. Buffat, B. Dwir, and E. I. Suvorova, J. Cryst. Growth 366, 55 (2013).

    Article  ADS  Google Scholar 

  5. X. Z. Shang, Jing Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid State Electron. 51, 85 (2007).

    Article  ADS  Google Scholar 

  6. L. Pavesi and M. Guzzi, J. Appl. Phys. 75, 4779 (1994).

    Article  ADS  Google Scholar 

  7. Y. Takano, K. Kobayashi, H. Iwohori, K. Kuwahara, S. Fuke, and S. Shirakata, Appl. Phys. Lett. 80, 2054 (2002).

    Article  ADS  Google Scholar 

  8. S. K. Brierley, J. Appl. Phys. 74, 2760 (1993).

    Article  ADS  Google Scholar 

  9. J. M. Gilperez, J. L. Sanchez-Rojas, E. Munoz, E. Calleja, J. P. R. David, M. Reddy, G. Hill, and J. Sanchez-Dehesa, J. Appl. Phys. 76, 5931 (1994).

    Article  ADS  Google Scholar 

  10. S. K. Brierley, A. Torabi, and R. S. Lyman, J. Appl. Phys. 86, 914 (1999).

    Article  ADS  Google Scholar 

  11. K. Watanabe and H. Yokoyama, J. Appl. Phys. 86, 4333 (1999).

    Article  ADS  Google Scholar 

  12. A. Dodabalapur, K. Sadra, and B. Streetman, J. Appl. Phys. 68, 411 (1990).

    Article  Google Scholar 

  13. H. Brugger, H. Mussig, C. Wolk, K. Kern, and D. Heitmann, Appl. Phys. Lett. 59, 2739 (1991).

    Article  ADS  Google Scholar 

  14. G. L. Zhou, W. Liu, and M. E. Lin, J. Cryst. Growth 227–228, 218 (2001).

    Article  Google Scholar 

  15. N. G. Yaremenko, G. B. Galiev, I. S. Vasil’evski, E. A. Klimov, M. V. Karachevtseva, and V. A. Strakhov, J. Commun. Technol. Electron. 58, 243 (2013).

    Article  Google Scholar 

  16. M. Wojtowicz, D. Pascua, A.-C. Han, T. R. Block, and D. C. Streit, J. Cryst. Growth 175–176, 930 (1997).

    Article  Google Scholar 

  17. X. Z. Shang, J. Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid State Electron. 51, 85 (2007).

    Article  ADS  Google Scholar 

  18. T. Mishima, M. Kudo, J. Kasai, K. Higuchi, and T. Nakamura, J. Cryst. Growth 201–202, 271 (1999).

    Article  Google Scholar 

  19. X. Z. Shang, S. D. Wu, C. Liu, W. X. Wang, L. W. Guo, Q. Huang, and J. M. Zhou, J. Phys. D: Appl. Phys. 39, 1800 (2006).

    Article  ADS  Google Scholar 

  20. G. B. Galiev, S. S. Pushkarev, I. S. Vasil’evski, E. A. Klimov, and R. M. Imamov, Semiconductors 47, 997 (2013).

    Article  ADS  Google Scholar 

  21. G. B. Galiev, S. S. Pushkarev, I. S. Vasil’evski, O. M. Zhigalina, E. A. Klimov, V. G. Zhigalina, and R. M. Imamov, Semiconductors 47, 532 (2013).

    Article  ADS  Google Scholar 

  22. G. B. Galiev, I. S. Vasil’evski, E. A. Klimov, V. G. Mokerov, and A. A. Cherechukin, Semiconductors 40, 1445 (2006).

    Article  ADS  Google Scholar 

  23. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  24. S. Adachi, Properties of Semiconductor Alloys: Group IV, III–V and II–VI Semiconductors (Wiley, 2009), p. 157.

    Book  Google Scholar 

  25. V. Ya. Demikhovskii and G. A. Vugal’ter, Physics of Quantum Low-Dimensional Structures (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  26. J. Hellara, K. Borgi, H. Maaref, V. Souliere, and Y. Monteil, Mater. Sci. Eng. C 21, 231 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Galiev.

Additional information

Original Russian Text © G.B. Galiev, E.A. Klimov, A.N. Klochkov, D.V. Lavruhin, S.S. Pushkarev, P.P. Maltsev, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 5, pp. 658–666.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, G.B., Klimov, E.A., Klochkov, A.N. et al. Photoluminescence studies of In0.7Al0.3As/In0.75Ga0.25As/In0.7Al0.3As metamorphic heterostructures on GaAs substrates. Semiconductors 48, 640–648 (2014). https://doi.org/10.1134/S1063782614050078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614050078

Keywords

Navigation