Skip to main content
Log in

Optical properties of oxygen-implanted CdS:O layers in terms of band anticrossing theory

  • Spectroscopy, Interaction with Radiation
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The microcathodoluminescence (MCL) and photoreflection spectra of CdS:O layers implanted with oxygen ions to 4 × 1020 cm−3 are investigated. Used method of MCL spectroscopy yields information only about the implanted-layer volume. Exciton MCL spectra, which allow one to determine the concentration of dissolved oxygen in the CdS:O layers and the influence of deviation of the substrates from stoichiometry, are recorded. The homogeneity of the ion-implanted layers is studied by cathodoluminescence (CL) scanning electron microscopy. The relationship between light-emitting areas and the luminescence band at ∼630 nm is established. The reason for enhancement of this band upon radiation annealing is revealed and its nature as the luminescence of F+ centers in CdS is confirmed. New photoreflection spectroscopy data are obtained, which describe the specific behavioral features of oxygen on the layer surface as an isoelectronic impurity in highly mismatched alloys (HMAs). It is shown that sulfur completely bonds and removes oxygen from CdS:O. Oxygen-free CdS remains on the surface in the form of nanoparticles, the size of which depends on the oxygen concentration in the CdS:O layer bulk. The results obtained are in agreement with the predictions of band anticrossing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Mideros, Extended Abstract of Candidate’s Dissertation (Moscow Power Eng. Inst., Moscow, 2008).

  2. T. Sandu and W. P. Kirk, Phys. Rev. B 72, 073204 (2005).

    Article  ADS  Google Scholar 

  3. A. X. Levander, K. M. Yu, S. V. Novikov, A. Tseng, C. T. Foxon, O. D. Dubon, J. Wu, and W. Walukiewicz, Appl. Phys. Lett. 97, 141919 (2010).

    Article  ADS  Google Scholar 

  4. W. Shan, K. M. Yu, W. Walukiewicz, J. W. Beeman, et al., Appl. Phys. Lett. 84, 924 (2004).

    Article  ADS  Google Scholar 

  5. N. K. Morozova, Zinc Sulfide: Preparation and Optical Properties (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  6. N. K. Morozova, D. A. Mideros, V. G. Galstyan, and E. M. Gavrishchuk, Sov. Phys. Semicond. 42, 1023 (2008).

    Article  Google Scholar 

  7. N. K. Morozova, D. A. Mideros, E. M. Gavrishchuk, et al., Sov. Phys. Semicond. 42, 131 (2008).

    Article  Google Scholar 

  8. T. Sandu and R. I. Iftimie, Solid State Commun. 150, 888 (2010).

    Article  ADS  Google Scholar 

  9. K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, et al., Phys. Rev. Lett. 91, 246 (2003).

    Google Scholar 

  10. N. K. Morozova, V. I. Oleshko, N. D. Danilevich, and S. S. Vil’chinskaya, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 1 (93), 14 (2012).

    Google Scholar 

  11. N. D. Danilevich, Extended Abstract of Candidate’s Dissertation (Moscow Power Eng. Inst., Moscow, 2011).

  12. N. K. Morozova, V. I. Oleshko, N. D. Danilevich, and S. S. Vil’chinskaya, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 3 (95), 3 (2012).

    Google Scholar 

  13. V. G. Galstyan, V. I. Muratova, A. V. Morozov, and N. K. Morozova, Trudy Mosc. Energ. Inst., No. 171, 49 (1988).

    Google Scholar 

  14. A. V. Morozov, Extended Abstract of Candidate’s Dissertation (Moscow Power Eng. Inst., Moscow, 1993).

  15. Yu. V. Voronov, Trudy FIAN, Kratk. Soobshch. Fiz. 68, 3 (1973).

    Google Scholar 

  16. S. S. Vilchinskaya, V. M. Lisitsyn, and V. I Korepanov, Func. Mater. 18, 457 (2011).

    Google Scholar 

  17. I. B. Ermolovich, A. V. Lyubchenko, and M. K. Sheinkman, Sov. Phys. Semicond. 2, 1364 (1968).

    Google Scholar 

  18. N. K. Morozova, V. G. Galstyan, V. I. Oleshko, N. D. Danilevich, and S. S. Vil’chinskaya, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 6 (98), 3 (2012).

    Google Scholar 

  19. N. K. Morozova, N. D. Danilevich, and A. A. Kanakhin, Phys. Status Solidi C 7, 1501 (2010).

    Article  ADS  Google Scholar 

  20. N. K. Morozova, V. G. Galstyan, and A. A. Kanakhin, in Proceedings of the 42nd International Scientific Technical Seminar on Noise and Degradation Processes in Semiconductors (Mosk. Energ. Inst., Moscow, 2012), p. 150.

    Google Scholar 

  21. K. Akimoto, T. Miyajima, and Y. Mori, Phys. Rev. B 39, 3138 (1989).

    Article  ADS  Google Scholar 

  22. V. V. Krasnopevtsev, Yu. V. Milyutin, and P. V. Shapkin, Kratk. Soobshch. Fiz., No. 8, 12 (1974).

    Google Scholar 

  23. Y. L. Soo and W. H. Sun, Bull. Am. Phys. Soc. 52(1) (2007).

    Google Scholar 

  24. Y. L. Soo, W. H. Sun, S. C. Weng, et al., Appl. Phys. Lett. 89, 131908 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Morozova.

Additional information

Original Russian Text © N.K. Morozova, A.A. Kanakhin, I.N. Miroshnikova, V.G. Galstyan, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 8, pp. 1014–1021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, N.K., Kanakhin, A.A., Miroshnikova, I.N. et al. Optical properties of oxygen-implanted CdS:O layers in terms of band anticrossing theory. Semiconductors 47, 1018–1025 (2013). https://doi.org/10.1134/S1063782613080149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613080149

Keywords

Navigation