Skip to main content
Log in

Photoelectric and luminescence properties of GaSb-Based nanoheterostructures with a deep Al(As)Sb/InAsSb/Al(As)Sb quantum well grown by metalorganic vapor-phase epitaxy

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The luminescence and photoelectric properties of heterostructures with a deep Al(As)Sb/InAsSb/Al(As)Sb quantum well grown on n-GaSb substrates by metalorganic vapor-phase epitaxy are investigated. Intense superlinear luminescence and increased optical power as a function of the pump current in the photon energy range of 0.6–0.8 eV are observed at temperatures of T = 77 and 300 K. The photoelectric, current-voltage, and capacitance characteristics of these heterostructures are studied in detail. The photosensitivity is examined with photodetectors operating in the photovoltaic mode in the spectral range of 0.9–2.0 μm. The sensitivity maximum at room temperature is observed at a wavelength of 1.55 μm. The quantum efficiency, detectivity, and response time of the photodetectors were estimated. The quantum efficiency and detectivity at the peak of the photosensitivity spectrum are as high as η = 0.6–0.7 and D *λmax = (5–7) × 1010 cm Hz1/2 W−1, respectively. The photodiode response time determined as the rise time of the photoresponse pulse from 0.1 to the level 0.9 is 100–200 ps. The photodiode transmission bandwidth is 2–3 GHz. Photodetectors with a deep Al(As)Sb/InAsSb/Al(As)Sb quantum well grown on n-GaSb substrates are promising foruse in heterodyne detection systems and in information technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Haywood and M. Missons, in Mid-Infrared Semiconductor Optoelectronics, Ed. by A. Krier, Springer Series in Optical Sciences (Springer, 2006), p. 429.

  2. B. E. Levine, J. Appl. Phys. 74, R1 (1996).

    Article  ADS  Google Scholar 

  3. E. Luna, A. Gusman, J. Sanches-Rocha, et al., Infrared Phys. Technol. 44, 383 (2003).

    Article  ADS  Google Scholar 

  4. N. Georgiev, T. Dekorsy, F. Eichhorn, M. Helm, M. P. Semtsiv, and W. T. Masselink, Appl. Phys. Lett. 83, 210 (2003).

    Article  ADS  Google Scholar 

  5. Y. Touškova, E. Hulicius, J. Pangrac, T. Šime ek, V. Yurka, P. Hubik, Y. Y. Mareš, and Y. Krištofik, Appl. Phys. Lett. 95, 1811 (2004).

    Google Scholar 

  6. M. P. Mikhailova, E. V. Ivanov, K. D. Moiseev, Yu. P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, and T. Šimeček, Semiconductors 44, 66 (2010).

    Article  ADS  Google Scholar 

  7. M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, G. G. Konovalov, M. Yu. Mikhailov, and Yu. P. Yakovlev, Semiconductors 45, 248 (2011).

    Article  ADS  Google Scholar 

  8. K. D. Moiseev, E. V. Ivanov, G. G. Zegrya, M. P. Mikhailova, Yu. P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, and T. Šimeěk, Appl. Phys. Lett. 88, 132102 (2006).

    Article  ADS  Google Scholar 

  9. M. P. Mikhailova, E. V. Ivanov, L. V. Danilov, K. V. Kalinina, N. D. Stoyanov, G. G. Zegrya, Yu. P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, and M. Zikova, J. Appl. Phys. 112, 023108 (2012).

    Article  ADS  Google Scholar 

  10. H. Kroemer, Physica E 20, 196 (2004).

    Article  ADS  Google Scholar 

  11. L. V. Danilov and G. G. Zegrya, Semiconductors 42, 550 (2008).

    Article  ADS  Google Scholar 

  12. J. H. Smet, L. H. Peng, Y. Hirayama, and G. G. Tonslad, Appl. Phys. Lett. 64, 986 (1994).

    Article  ADS  Google Scholar 

  13. Yu. P. Yakovlev, I. A. Andreev, S. S. Kizhaev, E. V. Kunitsyna, and M. P. Mikhailova, Proc. SPIE 6636, 66360D-1 (2000).

    Google Scholar 

  14. M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, N. D. Stoyanov, Yu. P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, and K. Melichar, Proc. SPIE 7138, 713813 (2008).

    Article  Google Scholar 

  15. Hamamatsu Photonics, Catalogue. http://hamamatsu.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Andreev.

Additional information

Original Russian Text © M.P. Mikhailova, I.A. Andreev, E.V. Ivanov, G.G. Konovalov, E.A. Grebentshikova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, Y. Pangrac, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 8, pp. 1037–1042.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, M.P., Andreev, I.A., Ivanov, E.V. et al. Photoelectric and luminescence properties of GaSb-Based nanoheterostructures with a deep Al(As)Sb/InAsSb/Al(As)Sb quantum well grown by metalorganic vapor-phase epitaxy. Semiconductors 47, 1041–1045 (2013). https://doi.org/10.1134/S1063782613080137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613080137

Keywords

Navigation