Skip to main content
Log in

Absorption and photoionization of the donor level in CdF2 semiconductor crystals

  • Spectroscopy, Interaction with Radiation
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A model of strong vibronic interaction is proposed to interpret the specific features of infrared absorption and photoionization in CdF2 semiconductor crystals. The model takes into account the polaronic nature of the conductivity in these crystals and the profound configuration shift of the free and bound polaron states. It is shown that the intense infrared absorption band in the crystals is not due to the transitions of charge carriers from hydrogen-like donor levels to the conduction band, but is caused by the phonon replicas of intracenter transitions. The low-temperature photoconductivity (in the temperature range 0–70 K) is a result of tunneling transitions between the phonon states of bound and free polarons, since these states are separated by rather high potential barriers. Overcoming the barriers in both directions is responsible for equilibration in the polaron subsystem upon the photoexcitation of charge carriers. The tunneling character of this process is responsible for the slight variation in the equilibration time in the above-indicated temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Kingsley and J. S. Prener, Phys. Rev. Lett. 8, 315 (1962).

    Article  ADS  Google Scholar 

  2. P. F. Weller, Inorg. Chem. 4, 1545 (1965).

    Article  Google Scholar 

  3. R. P. Khosla and D. Matz, Solid State Commun. 6, 859 (1968).

    Article  ADS  Google Scholar 

  4. R. P. Khosla, Phys. Rev. 183, 695 (1969).

    Article  ADS  Google Scholar 

  5. J. M. Langer, G. L. Pearson, T. Langer, and B. Krukowska-Fulde, Solid State Commun. 13, 767 (1973).

    Article  ADS  Google Scholar 

  6. J. M. Langer, T. Langer, G. L. Pearson, B. KrukowskaFulde, and U. Piekara, Phys. Status Solidi B 66, 537 (1974).

    Article  ADS  Google Scholar 

  7. T. H. Lee and F. Moser, Phys. Rev. B 3, 347 (1971).

    Article  ADS  Google Scholar 

  8. B. J. Feldman and P. S. Pershan, Solid State Commun. 11, 1131 (1972).

    Article  ADS  Google Scholar 

  9. J. E. Dmochowski, I. Kosaki, and J. M. Langer, Rad. Eff. Def. Solids 72, 139 (1983).

    Article  Google Scholar 

  10. J. M. Langer, in Reviews of Solid State Science (World Scientific, Singapore, 1990), vol. 4, p. 297.

    Google Scholar 

  11. S. A. Kazanskii, Y. Guyot, J.-C. Gacon, M.-F. Joubert, and C. Pedrini, Opt. Spectrosc. 104, 345 (2007).

    Article  ADS  Google Scholar 

  12. S. Grabtchak and M. Cocivera, Phys. Rev. B 58, 4701 (1998).

    Article  ADS  Google Scholar 

  13. M. Ichimura, N. Yamada, H. Tajiri, and E. Arai, J. Appl. Phys. 84, 2727 (1998).

    Article  ADS  Google Scholar 

  14. S. V. Garnov, A. I. Ritus, S. M. Klimentov, S. M. Pimenov, V. I. Konov, S. Gloor, W. Lüthy, and H. P. Weber, Appl. Phys. Lett. 74, 1731 (1999).

    Article  ADS  Google Scholar 

  15. N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Solids (Clarendon Press, Oxford, UK, 1979).

    Google Scholar 

  16. D. V. Lang, R. A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).

    Article  ADS  Google Scholar 

  17. A. M. Stoneham, Rep. Prog. Phys. 44, 1251 (1981).

    Article  ADS  Google Scholar 

  18. C. H. Henry and D. V. Lang, Phys. Rev. B 15, 989 (1977).

    Article  ADS  Google Scholar 

  19. R. Pässler,, J. Appl. Phys. 97, 113533 (2005).

    Article  ADS  Google Scholar 

  20. H. Kukimoto, S. Shionoya, T. Koda, and R. Hioki, J. Phys. Chem. Solids 29, 935 (1968).

    Article  ADS  Google Scholar 

  21. I. I. Saidashev, E. Yu. Perlin, A. I. Ryskin, and A. S. Shcheulin, Semiconductors 39, 506 (2005).

    Article  ADS  Google Scholar 

  22. P. Eisenberger and P. S. Pershan, Phys. Rev. 167, 292 (1968).

    Article  ADS  Google Scholar 

  23. C. W. Struck and W. H. Fonger, J. Luminesc. 10, 1 (1975).

    Article  ADS  Google Scholar 

  24. D. I. Stasel’ko, S. A. Tikhomirov, O. V. Buganov, A. S. Shcheulin, A. E. Angervaks, and A. I. Pyskin, Opt. Spectrosc. 110, 33 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Angervaks.

Additional information

Original Russian Text © S.A. Kazanskii, A.S. Shcheulin, A.E. Angervaks, A.I. Ryskin, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 7, pp. 902–906.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazanskii, S.A., Shcheulin, A.S., Angervaks, A.E. et al. Absorption and photoionization of the donor level in CdF2 semiconductor crystals. Semiconductors 47, 911–915 (2013). https://doi.org/10.1134/S1063782613070105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613070105

Keywords

Navigation