Skip to main content
Log in

Light-emitting tunneling nanostructures based on quantum dots in a Si and GaAs matrix

  • XVI Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 12–16, 2012
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

InGaAs/GaAs and Ge/Si light-emitting heterostructures with active regions consisting of a system of different-size nanoobjects, i.e., quantum dot layers, quantum wells, and a tunneling barrier are studied. The exchange of carriers preceding their radiative recombination is considered in the context of the tunneling interaction of nanoobjects. For the quantum well-InGaAs quantum dot layer system, an exciton tunneling mechanism is established. In such structures with a barrier thinner than 6 nm, anomalously fast carrier (exciton) transfer from the quantum well is observed. The role of the above-barrier resonance of states, which provides “instantaneous” injection into quantum dots, is considered. In Ge/Si structures, Ge quantum dots with heights comparable to the Ge/Si interface broadening are fabricated. The strong luminescence at a wavelength of 1.55 μm in such structures is explained not only by the high island-array density. The model is based on (i) an increase in the exciton oscillator strength due to the tunnel penetration of electrons into the quantum dot core at low temperatures (T < 60 K) and (ii) a redistribution of electronic states in the Δ24 subbands as the temperature is increased to room temperature. Light-emitting diodes are fabricated based on both types of studied structures. Configuration versions of the active region are tested. It is shown that selective pumping of the injector and the tunnel transfer of “cold” carriers (excitons) are more efficient than their direct trapping by the nanoemitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, Electron. Lett. 30, 1416 (1994).

    Article  Google Scholar 

  2. A. E. Zhukov, Lasers Based on Semiconductor Nanostructures (Elmor, St.-Petersburg, 2007) [in Russian].

    Google Scholar 

  3. A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, N. A. Maleev, V. M. Ustinov, B. V. Volovik, M. V. Maksimov, A. F. Tsatsul’nikov, N. N. Ledentsov, Yu. M. Shernyakov, A. V. Lunev, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, and Zh. I. Alferov, Semiconductors 33, 153 (1999).

    Article  ADS  Google Scholar 

  4. M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).

    Article  ADS  Google Scholar 

  5. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Appl. Phys. Lett. 71, 258 (1997).

    Article  ADS  Google Scholar 

  6. V. Ya. Aleshkin, N. A. Bekin, N. G. K. Kalugin, Z. F. Krasil’nik, A. V. Novikov, and V. V. Postnikov, JETP Lett. 67, 48 (1998).

    Article  ADS  Google Scholar 

  7. O. G. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000).

    Article  ADS  Google Scholar 

  8. A. V. Dvurechenskii and A. I. Yakimov, Semiconductors 35, 1095 (2001).

    Article  ADS  Google Scholar 

  9. V. G. Talalaev, G. E. Tsyrlin, A. A. Tonkikh, N. D. Zakharov, P. Werner, U. Gösele, J. W. Tomm, and T. Elsaesser, Nanoscale Res. Lett. 1, 137 (2006).

    Article  ADS  Google Scholar 

  10. A. V. Novikov, M. V. Shaleev, A. N. Yablonskii, O. A. Kuznetsov, Yu. N. Drozdov, D. N. Lobanov, and Z. F. Krasilnik, Semicond. Sci. Technol. 22, S29 (2007).

    Article  ADS  Google Scholar 

  11. L. V. Asryan and S. Luryi, IEEE J. Quant. Electron. 37, 905 (2001).

    Article  ADS  Google Scholar 

  12. L. F. Register, C. Wanqiang, X. Zheng, and M. Stroscio, Int. J. High Speed Electron. Syst. 12, 239 (2001).

    Google Scholar 

  13. P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J. Urayama, K. Kim, and T. B. Norris, IEEE J. Quant. Electron. 39, 952 (2003).

    Article  ADS  Google Scholar 

  14. Z. Mi, P. Bhattacharya, and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).

    Article  ADS  Google Scholar 

  15. V. P. Evtikhiev, O. V. Konstantinov, A. V. Matveentsev, and A. E. Romanov, Semiconductors 36, 74 (2002).

    Article  ADS  Google Scholar 

  16. G. Sek, P. Poloczek, P. Podemski, R. Kudrawiec, J. Misiewicz, A. Somers, S. Hein, S. Höfling, and A. Forchel, Appl. Phys. Lett. 90, 081915 (2007).

    Article  ADS  Google Scholar 

  17. V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Yu. B. Samsonenko, V. A. Egorov, and G. E. Tsyrlin, Appl. Phys. Lett. 93, 031105 (2008).

    Article  ADS  Google Scholar 

  18. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gösele, Yu. B. Samsonenko, and G. E. Tsyrlin, Semiconductors 44, 1050 (2010).

    Article  ADS  Google Scholar 

  19. Yu. I. Mazur, Zh. M. Wang, and G. G. Tarasov, Phys. Rev. B 71, 235313 (2005).

    Article  ADS  Google Scholar 

  20. V. G. Talalaev, J. W. Tomm, A. S. Sokolov, I. V. Shtrom, B. V. Novikov, A. Winzer, R. Goldhahn, G. Gobsch, N. D. Zakharov, P. Werner, U. Gösele, G. E. Tsyrlin, A. A. Tonkikh, V. M. Ustinov, and G. G. Tarasov, J. Appl. Phys. 100, 083704 (2006).

    Article  ADS  Google Scholar 

  21. T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao, J. Appl. Phys. 63, 5491 (1988).

    Article  ADS  Google Scholar 

  22. M. Nido, M. G. W. Alexander, and W. W. Ruehle, Appl. Phys. Lett. 56, 355 (1990).

    Article  ADS  Google Scholar 

  23. J. N. Zeng, I. Souma, Y. Amemiya, and Y. Oka, J. Surf. Anal. 3, 529 (1997).

    Google Scholar 

  24. S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, and G. Bacher, Semiconductors 42, 813 (2008).

    Article  ADS  Google Scholar 

  25. I. Lawrence, S. Haacke, H. Mariette, W. W. Rühle, H. Ulmer-Tuffigo, J. Cibert, and G. Feuillet, Phys. Rev. Lett. 73, 2131 (1994).

    Article  ADS  Google Scholar 

  26. S. Ten, F. Henneberger, M. Rabe, and N. Peyghambarian, Phys. Rev. B 53, 12637 (1996).

    Article  ADS  Google Scholar 

  27. D. A. Mazurenko and A. V. Akimov, Phys. Solid State 43, 752 (2001).

    Article  ADS  Google Scholar 

  28. S. V. Zaitsev, A. S. Brichkin, Yu. A. Tarakanov, and G. Bacher, Phys. Status Solidi B 247, 353 (2010).

    Article  ADS  Google Scholar 

  29. A. Tomita, J. Shah, and R. S. Knox, Phys. Rev. B 53, 10793 (1996).

    Article  ADS  Google Scholar 

  30. S. K. Lyo, Phys. Rev. B 62, 13641 (2000).

    Article  ADS  Google Scholar 

  31. F. C. Michl, R. Winkler, and U. Roessler, Solid State Commun. 99, 13 (1996).

    Article  ADS  Google Scholar 

  32. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, L. V. Asryan, N. D. Zakharov, P. Werner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Tsyrlin, Vestn. SPb. Univ. (2012, in press).

  33. A. V. Senichev, V. G. Talalaev, J. W. Tomm, B. V. Novikov, P. Werner, and G. E. Tsyrlin, Phys. Status Solidi (RRL) 5, 385 (2011).

    Article  ADS  Google Scholar 

  34. Ch. S. Kim, A. M. Satanin, and V. B. Shtenberg, Semiconductors 36, 539 (2002).

    Article  ADS  Google Scholar 

  35. R. C. Iotti and L. C. Andreani, Semicond. Sci. Technol. 10, 1561 (1995).

    Article  ADS  Google Scholar 

  36. M. Bayer, S. N. Walck, and T. L. Reinecke, Phys. Rev. B 57, 6584 (1998).

    Article  ADS  Google Scholar 

  37. I. Galbraith and G. Duggan, Phys. Rev. B 40, 5515 (1989).

    Article  ADS  Google Scholar 

  38. H. Sunamura, S. Fukatsu, N. Usami, and Y. Shiraki, J. Cryst. Growth 157, 265 (1995).

    Article  ADS  Google Scholar 

  39. O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74, 1272 (1999).

    Article  ADS  Google Scholar 

  40. K. Eberl, O. G. Schmidt, R. Duschl, O. Kienzle, E. Ernst, and Y. Rau, Thin Solid Films 369, 33 (2000).

    Article  ADS  Google Scholar 

  41. A. V. Novikov, D. N. Lobanov, A. N. Yablonskii, Y. N. Drozdov, N. V. Vostokov, and Z. F. Krasilnik, Physica E 16, 467 (2003).

    Article  ADS  Google Scholar 

  42. T. Baier, U. Mantz, K. Thonke, R. Sauer, F. Schäffler, and H.-J. Herzog, Phys. Rev. B 50, 15191 (1994).

    Article  ADS  Google Scholar 

  43. M. El Kurdi, S. Sauvage, G. Fishman, and P. Boucaud, Phys. Rev. B 73, 195327 (2006).

    Article  ADS  Google Scholar 

  44. A. Tonkikh, N. Zakharov, V. Talalaev, and P. Werner, Phys. Status Solidi (RRL) 4, 224 (2010).

    Article  ADS  Google Scholar 

  45. T. M. Burbaev, T. N. Zavaritskaya, V. A. Kurbatov, N. N. Mel’nik, V. A. Tsvetkov, K. S. Zhuravlev, V. A. Markov, and A. I. Nikiforov, Semiconductors 35, 941 (2001).

    Article  ADS  Google Scholar 

  46. V. Ya. Aleshkin and N. A. Bekin, J. Phys.: Condens. Matter 9, 4841 (1997).

    Article  ADS  Google Scholar 

  47. M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, Phys. Rev. Lett. 79, 269 (1997).

    Article  ADS  Google Scholar 

  48. B. V. Kamenev, L. Tsybeskov, J. Baribeau, and D. J. Lockwood, Phys. Rev. B 72, 193306 (2005).

    Article  ADS  Google Scholar 

  49. M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P. O. Holtz, Phys. Rev. B 73, 195319 (2006).

    Article  ADS  Google Scholar 

  50. B. Julsgaard, P. Balling, J. L. Hansen, A. Svane, and A. N. Larsen, Appl. Phys. Lett. 98, 093101 (2011).

    Article  ADS  Google Scholar 

  51. G. Bremond, M. Serpentini, A. Souifi, G. Guillot, B. Jacquier, M. Abdallah, I. Berbezier, and B. Joyce, Microelectron. J. 30, 357 (1999).

    Article  Google Scholar 

  52. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, Appl. Phys. Lett. 83, 2958 (2003).

    Article  ADS  Google Scholar 

  53. D. N. Lobanov, A. V. Novikov, K. E. Kudryavtsev, D. V. Shengurov, Yu. N. Drozdov, A. N. Yablonskii, V. B. Shmagin, Z. F. Krasil’nik, N. D. Zakharov, and P. Werner, Semiconductors 43, 313 (2009).

    Article  ADS  Google Scholar 

  54. L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).

    Article  ADS  Google Scholar 

  55. D.-S. Han, and L. V. Asryan, Appl. Phys. Lett. 92, 251113 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Talalaev.

Additional information

Original Russian Text © V.G. Talalaev, A.A. Tonkikh, N.D. Zakharov, A.V. Senichev, J.W. Tomm, P. Werner, B.V. Novikov, L.V. Asryan, B. Fuhrmann, J. Schilling, H.S. Leipner, A.D. Bouraulev, Yu.B. Samsonenko, A.I. Khrebtov, I.P. Soshnikov, G.E. Cirlin, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 11, pp. 1492–1503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talalaev, V.G., Tonkikh, A.A., Zakharov, N.D. et al. Light-emitting tunneling nanostructures based on quantum dots in a Si and GaAs matrix. Semiconductors 46, 1460–1470 (2012). https://doi.org/10.1134/S1063782612110218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612110218

Keywords

Navigation