Skip to main content
Log in

Effect of the temperature during deposition of AlO x films by spray pyrolysis on their passivating properties in a silicon solar cell

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of the deposition temperature of AlO x in the range 330–530°C by spray pyrolysis on the rear-surface parameters of silicon (n + pp +)Cz-Si/AlO x solar cells has been studied. It is found that, as the temperature of AlO x deposition is increased, all parameters of the rear surfaces decrease; e.g., the photocurrent density decreases from 25.4 to 24.1 mA/cm2; the photovoltage decreases from 611 to 598 mV; and the efficiency decreases from 12.2 to 10.9%. This indicates that passivation of the p +-type surface with AlO x films becomes less effective. It is concluded that, as the temperature of AlO x deposition is increased, the value of the positive charge incorporated into the nonstoichiometric interphase SiO x layer formed between c-Si and AlO x in the course of AlO x deposition, which brings about screening of the negative charge localized at the AlOx-SiOx interface and, respectively, a decrease in the field-induced passivation, increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 113703 (2008).

    Article  ADS  Google Scholar 

  2. R. Hezel and K. Jaeger, J. Electrochem. Soc. 136, 518 (1989).

    Article  Google Scholar 

  3. G. Agostinelli, P. Vitanov, Z. Alexieva, A. Harizanova, H. F. W. Dekkers, S. DeWolf, and G. Beaucarne, in Proceedings of the 19th European Photovoltaic Solar Energy Conference (Paris, 2004), p. 132.

  4. G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. DeWolf, and G. Beaucarne, Solar Energy Mater. Solar Cells 90, 3438 (2006).

    Article  Google Scholar 

  5. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).

    Article  ADS  Google Scholar 

  6. B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 91, 112107 (2007).

    Article  ADS  Google Scholar 

  7. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, Photovolt.: Res. Appl. 16, 461 (2008).

    Article  Google Scholar 

  8. J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, Appl. Phys. Lett. 92, 253504 (2008).

    Article  ADS  Google Scholar 

  9. J. Benick, B. Hoex, G. Dingenmans, W. M. M. Kessels, A. Richter, M. Hermle, and S. W. Glunz, in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), p. 863.

  10. B. Vermang, X. Loozen, C. Allebe, J. John, E. VanKerschaver, J. Poortmans, and R. Mertens, in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), p. 1051.

  11. S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai, in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Valencia, 2009), p. 1029.

  12. P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, Appl. Phys. Lett. 95, 151502 (2009).

    Article  ADS  Google Scholar 

  13. T.-T. Li and A. Cuevas, Phys. Status Solidi RRL 3, 160 (2009).

    Article  Google Scholar 

  14. T.-T. Li, S. Ruffell, M. Tucci, Y. Mansoulie, Ch. Samundsett, S. De Iullis, L. Serenelli, and A. Cuevas, Solar Energy Mater. Solar Cells 95, 69 (2010).

    Article  Google Scholar 

  15. G. Untila, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, and O. Solodukha, in Proceedings of the 25th European Photovoltaic Solar Energy Conference (Valencia, 2010), p. 2592.

  16. A. Chebotareva, G. Untila, T. Kost, S. Jorgensen, and A. G. Ulyashin, Thin Solid Films 515, 8505 (2007).

    Article  ADS  Google Scholar 

  17. G. G. Untila, T. N. Kost, and A. B. Chebotareva, Thin Solid Films 518, 1345 (2009).

    Article  ADS  Google Scholar 

  18. G. G. Untila, T. N. Kost, A. B. Chebotareva, M. B. Zaks, A. M. Sitnikov, and O. I. Solodukha, Semiconductors 39, 1349 (2005).

    Article  Google Scholar 

  19. B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 044903 (2008).

    Article  ADS  Google Scholar 

  20. J. J. H. Gielis, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 073701 (2008).

    Article  ADS  Google Scholar 

  21. N. M. Terlinden, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 96, 112101 (2010).

    Article  ADS  Google Scholar 

  22. G. Dingemans, R. Seguin, P. Engelhart, M. C. M. van de Sanden, and W. M. M. Kessels, Phys. Status Solidi RRL 4, 10 (2010).

    Article  Google Scholar 

  23. A. R. Chowdhuri, C. G. Takoudis, R. F. Klie, and N. D. Browning, Appl. Phys. Lett. 80, 4241 (2002).

    Article  ADS  Google Scholar 

  24. J. A. Aboad, D. R. Kerr, and E. Bassous, J. Electrochem. Soc.: Solid-State Sci. Technol. 120, 1130 (1973).

    Google Scholar 

  25. R. F. Klie, N. D. Browning, A. R. Chowdhuri, and C. G. Takoudis, Appl. Phys. Lett. 83, 1187 (2003).

    Article  ADS  Google Scholar 

  26. G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 13, H76 (2010).

    Article  Google Scholar 

  27. S.-C. Ha, E. Choi, S.-H. Kim, and J. S. Roh, Thin Solid Films 476, 252 (2005).

    Article  ADS  Google Scholar 

  28. J. Shewchun, J. Dubow, C. W. Wilmsen, R. Singh, D. Burk, and J. F. Wager, Appl. Phys. 50, 2832 (1979).

    Google Scholar 

  29. H. Kobayashi, Y. Kogetsu, T. Ishida, and Y. Nakato, J. Appl. Phyt. 74, 4756 (1993).

    Article  ADS  Google Scholar 

  30. H. Kobayashi, T. Ishida, Y. Nakato, and H. Tsubomura, J. Appl. Phys. 69, 1736 (1991).

    Article  ADS  Google Scholar 

  31. G. G. Untila, T. N. Kost, A. B. Chebotareva, M. B. Zaks, A. M. Sitnikov, and O. V. Solodukha, Semiconductors 42, 406 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Untila.

Additional information

Original Russian Text © G.G. Untila, T.N. Kost, A.B. Chebotareva, M.B. Zaks, A.M. Sitnikov, O.I. Solodukha, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 6, pp. 852–856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Untila, G.G., Kost, T.N., Chebotareva, A.B. et al. Effect of the temperature during deposition of AlO x films by spray pyrolysis on their passivating properties in a silicon solar cell. Semiconductors 46, 832–837 (2012). https://doi.org/10.1134/S1063782612060255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612060255

Keywords

Navigation