Skip to main content
Log in

Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. Lett. 36(4B), L459 (1997).

    Article  ADS  Google Scholar 

  2. M. A. Sancehez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, and R. Beresford, J. Cryst. Growth 183, 23 (1998).

    Article  ADS  Google Scholar 

  3. V. V. Mamutin, N. A. Cherkashin, V. A. Vekshin, V. N. Zhmerik, and S. V. Ivanov, Phys. Solid State 43, 151 (2001).

    Article  ADS  Google Scholar 

  4. M. Tchernycheva, C. Sartel, G. Cirlin, L. Traves, G. Patriarche, J. C. Harmand, S. Dang Le, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).

    Article  ADS  Google Scholar 

  5. R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutterand, and H. Luth, Nano Lett. 7, 2248 (2007).

    Article  ADS  Google Scholar 

  6. O. Landre, C. Bourgeol, H. Renevier, and B. Daudin, Nanotechnology 20, 415602 (2009).

    Article  Google Scholar 

  7. V. G. Dubrovskii, G. E. Tsyrlin, and V. M. Ustinov, Semiconductors 43 (2009).

  8. V. Consonni, M. Knelangen, A. Trampert, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 98, 071913 (2011).

    Article  ADS  Google Scholar 

  9. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, Nature Mater. 1, 106 (2002).

    Article  ADS  Google Scholar 

  10. E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000).

    Article  ADS  Google Scholar 

  11. Yu Huang, X. Duan, Yi Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002).

    Article  ADS  Google Scholar 

  12. M. Sakai, Y. Unose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, Appl. Phys. Lett. 97, 151109 (2010).

    Article  ADS  Google Scholar 

  13. J. Ristic, E. Calleja, S. Fernández-Garrido, L. Cerytti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008).

    Article  ADS  Google Scholar 

  14. V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010).

    Article  ADS  Google Scholar 

  15. V. V. Mamutin, Tech. Phys. Lett. 25, 741 (1999).

    Article  ADS  Google Scholar 

  16. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriache, L. Lagreau, O. Maugin, J. C. Harmand, L. S. Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Phys. Status Solidi C 5, 1556 (2008).

    Article  ADS  Google Scholar 

  17. V. G. Dubrovskii, N. V. Sibirev, and G. E. Cirlin, Tech. Phys. Lett. 30, 682 (2004).

    Article  ADS  Google Scholar 

  18. V. G. Dubrovskii, N. V. Sibirev, and M. A. Timofeeva, Semiconductors 43, 1226 (2009).

    Article  ADS  Google Scholar 

  19. V. G. Dubrovskii and N. V. Sibirev, Tech. Phys. Lett. 32, 1047 (2006).

    Article  ADS  Google Scholar 

  20. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J. P. Nys, D. Stievenard, M. Moewe, L. C. Chyang, and C. Chang-Hasnain, Phys. Rev. B 79, 205316 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sibirev.

Additional information

Original Russian Text © N.V. Sibirev, M. Tchernycheva, G.E. Cirlin, G. Patriarche, J.C. Harmand, V.G. Dubrovskii, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 6, pp. 857–860.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibirev, N.V., Tchernycheva, M., Cirlin, G.E. et al. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth. Semiconductors 46, 838–841 (2012). https://doi.org/10.1134/S1063782612060218

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612060218

Keywords

Navigation