Skip to main content
Log in

The adsorption effect of C6H5 on density of states for double wall carbon nanotubes by tight binding model

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A theoretical approach based on a tight-binding model is developed to study the effects of the adsorption of finite concentrations of C6H5 gas molecules on double-walled carbon nanotube (DWCNT) electronic properties. To obtain proper hopping integrals and random on-site energies for the case of one molecule adsorption, the local density of states for various hopping integrals and random on-site energies are calculated. Since C6H5 molecule is a donor with respect to the carbon nanotubes and their states should appear near the conduction band of the system, effects of various hopping integral deviations and on-site energies for one molecule adsorption are considered to find proper hopping and on-site energies consistent with expected n-type semiconductor. We found that adsorption of C6H5 gas molecules could lead to a (8.0)@(20.0) DWCNT n-type semiconductor. The width of impurity adsorbed gas states in the density of states could be controlled by adsorbed gas concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    Article  ADS  Google Scholar 

  3. D. S. Bethune et al., Nature 363, 605 (1993).

    Article  ADS  Google Scholar 

  4. J. P. Lu and J. Han, Int. J. High Electron. Syst. 9, 101 (1998).

    Article  ADS  Google Scholar 

  5. P. G. Collins, K. Bradley, M. Ishigami, and Z. Zettl, Science 287, 1801 (2000).

    Article  ADS  Google Scholar 

  6. J. Kong et al., Science 287, 622 (2000).

    Article  ADS  Google Scholar 

  7. G. U. Sumanasekera, B. K. Pradhan, H. E. Romero, K.W. Adu, and P. C. Eklund, Phys. Rev. Lett. 89, 166801 (2002).

    Article  ADS  Google Scholar 

  8. A. Star, T. R. Han, J. C. Gabriel, K. Bradley, and G. Grue- ner, Nano Lett. 3, 1421 (2003).

    Article  ADS  Google Scholar 

  9. E. S. Snow, F. K. Perkine, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Science 307, 1942 (2005).

    Article  ADS  Google Scholar 

  10. H. Park, J. Zhao, and J. P. Lu, Nano Lett. 6, 916 (2006).

    Article  ADS  Google Scholar 

  11. R. J. Chen, Y. Zhang, D. Wang, and H. J. Dai, J. Am. Chem. Soc. 123, 3838 (2001).

    Article  Google Scholar 

  12. X. Wang, Y. Liu, W. Qiu, and D. Zhu, J. Mater. Chem. 12, 1636 (2002).

    Article  Google Scholar 

  13. M. Penza, F. Antolini, and M. V. Antisari, Sensors Actuat. B 100, 47 (2004).

    Article  Google Scholar 

  14. H. Gao and Y. Kong, Ann. Rev. Mater. Res. 34, 123 (2004).

    Article  ADS  Google Scholar 

  15. S. Chopra, K. McGuire, N. Gothard, M. A. Rao, and A. Pham, Appl. Phys. Lett. 83, 2280 (2003).

    Article  ADS  Google Scholar 

  16. M. J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai, and M. J. McCall, Nano Lett. 4, 89 (2004).

    Article  ADS  Google Scholar 

  17. S. H. Jhi, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 85, 1710 (2000).

    Article  ADS  Google Scholar 

  18. R. Moradian, J. Phys.: Condens. Matter. 8, 507 (2006).

    Article  ADS  Google Scholar 

  19. R. Moradian and A. Fathalian, Nanotechnology 17, 1835 (2006).

    Article  ADS  Google Scholar 

  20. A. Fathalian, S. X. Dou, and R. Moradian, Physica B 405, 1125 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fathalian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathalian, A. The adsorption effect of C6H5 on density of states for double wall carbon nanotubes by tight binding model. Semiconductors 46, 769–772 (2012). https://doi.org/10.1134/S1063782612060103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612060103

Keywords

Navigation