Skip to main content
Log in

Radiation-induced surface degradation of GaAs and high electron mobility transistor structures

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Transistor heterostructures with high-carrier-mobility have been studied. It is shown that, as the γ-irradiation dose Φ increases, their degradation occurs in the following sequence. (i) At Φ < 107 rad, the GaAs surface layer is damaged to a depth of 10 nm due to a >0.2-eV decrease in the diffusion energy of intrinsic defects and, probably, atmospheric oxygen. (ii) At Φ > 107 rad, highly structurally disordered regions larger than 1 μm are formed near microscopic defects or dislocations. (iii) At Φ > 108 rad, there occurs degradation of the internal AlGaAs/InGaAs/GaAs interfaces and the working channel. An effective method for studying the degradation processes in heterostructures is to employ a set of structural diagnostic methods to analyze processes of radiation-induced and aging degradation, in combination with theoretical simulation of the occurring processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Bobyl’, R. V. Konakova, V. K. Kononov, V. V. Milenin, M. M. Malyshev, I. V. Prokopenko, M. I. Slutskii, and Yu. A. Tkhorik, Elektron. Tekh., Upravl. Kachestv., No. 4(151), 31 (1992).

    Google Scholar 

  2. A. E. Belyaev, J. Breza, E. F. Venger, M. Vesely, I. Yu. Il’in, R. V. Konakova, J. Liday, V. G. Lyapin, V. V. Milenin, I. V. Prokopenko, and Yu. A. Tkhorik, Radiantion Resistance of GaAs-Based Microwave Schottky Barrier Devices. Some Physico-Technological Aspects (Interpres, Kiev, 1998).

    Google Scholar 

  3. C. Claeys and E. Simoen, Radiation Effects in Advanced Semiconductor Materials and Devices (Springer-Verlag, 2002).

  4. A. E. Belyaev, N. S. Boltovets, R. V. Konakova, V. V. Milenin, Yu. N. Sveshnikov, and V. N. Sheremet, Semiconductors 44, 448 (2010).

    Article  Google Scholar 

  5. A. V. Bobyl’, A. A. Gutkin, P. N. Brunkov, I. A. Zamoryanskaya, M. A. Yagovkina, Yu. G. Musikhin, D. A. Sakseev, S. G. Konnikov, N. A. Maleev, V. M. Ustinov, P. S. Kop’ev, V. T. Punin, R. I. Il’kaev, and Zh. I. Alferov, Semiconductors 40, 687 (2006).

    Article  ADS  Google Scholar 

  6. R. V. Konakova, V. V. Milenin, and M. A. Stovpovoi, Peterb. Zh. Elektron. 4(16), 16 (2002).

    Google Scholar 

  7. J. Breza, M. Vesely, I. Yu. Il’in, K. A. Ismailov, R. V. Konakova, J. Liday, Yu. A. Tkhorik, and L. S. Khazan, in Proceedings of the International Symposium on Recent Advances in Microwave Technology (ISRAMT-95), Ed. by B. S. Rawat and K. S. Sunduchkov (Kiev, 1995), vol. 3, p. 844.

  8. M. J. O’Laughlin, IEEE Trans. Nucl. Sci. 34, 1808 (1987).

    Article  ADS  Google Scholar 

  9. A. P. Mamontov and I. P. Chernov, Effect of Low Doses of Ionizing Radiation (Energoatomizdat, Moscow, 2001) [in Russian].

    Google Scholar 

  10. D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography (Taylor Francis, London, 1998; Nauka, St.-Petersburg, 2002).

    Google Scholar 

  11. M. Shur, GaAs Devices and Circuits (Plenum, New York, London, 1986; Mir, Moscow, 1991).

    Google Scholar 

  12. Yu. Breza, P. I. Didenko, R. V. Konakova, V. V. Milenin, and G. F. Romanova, Tech. Phys. 40, 473 (1995).

    Google Scholar 

  13. V. M. Bermudez, J. Appl. Phys. 54, 6795 (1983).

    Article  ADS  Google Scholar 

  14. Yu. V. Trushin, Radiation Processes in Multicomponent Materials (Theory and Computer Simulation) (Fiz. Tekh. Inst. Ioffe, St.-Petersburg, 2002) [in Russian].

    Google Scholar 

  15. V. V. Emtsev and T. V. Mashovets, Impurities and Point Defects in Semiconductors (Radio i Svyaz’, Moscow, 1981) [in Russian].

    Google Scholar 

  16. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  ADS  Google Scholar 

  17. S. Sze, VLSI Technology (McGraw-Hill, New York, 1988; Mir, Moscow, 1986), vol. 1.

    Google Scholar 

  18. A. Rim and R. Beserman, J. Appl. Phys. 74, 897 (1993).

    Article  ADS  Google Scholar 

  19. B. Koley, M. Dagenais, G. McLane, and D. Stone, J. Appl. Phys. 82, 4586 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Konakova.

Additional information

Original Russian Text © A.V. Bobyl, S.G. Konnikov, V.M. Ustinov, M.V. Baidakova, N.A. Maleev, D.A. Sakseev, R.V. Konakova, V.V. Milenin, I.V. Prokopenko, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 6, pp. 833–844.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobyl, A.V., Konnikov, S.G., Ustinov, V.M. et al. Radiation-induced surface degradation of GaAs and high electron mobility transistor structures. Semiconductors 46, 814–824 (2012). https://doi.org/10.1134/S1063782612060085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612060085

Keywords

Navigation