Skip to main content
Log in

Effect of the structural features of polycrystalline semiconductor films on the formation of anomalous photovoltage: I. Phenomenon mechanism

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A model for a polycrystalline semiconductor corresponding to its real structure is proposed. On the basis of this model, a mechanism for anomalous photovoltaic effects (the initiation of an anomalous photovoltage, its dependence on illumination angle, and anomalous photomagnetic effect) is developed. It is assumed that potential barriers introducing inhomogeneity into the spatial distribution of photocarriers arise due to the capture of majority charge carriers at surface states of the crystallite boundaries. The effect is heavily dependent on the barrier height: if the band bending at the crystallite boundaries is depleting, the effect is determined by the spatial separation of the majority photocarriers by the barrier; otherwise, (the inversion band bending) the effect is formed due to the separation of minority photocarriers. The basis for the mechanism is the anisotropy of light absorption in the polycrystal’s bulk (the depleting band bending) or the geometrical inhomogeneity of the films caused by oblique deposition during fabrication (the inversion band bending.) The cause of the anisotropic absorption of light is its reflection by crystallite boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Starkievich, L. Sosnowski, and O. Simpson, Nature 158, 26 (1946).

    Article  ADS  Google Scholar 

  2. L. Pensak and B. Goldstein, Phys. Rev. 109, 601 (1958).

    Article  ADS  Google Scholar 

  3. E. I. Adirovich, Usp. Fiz. Nauk 105, 746 (1971).

    Google Scholar 

  4. E. I. Adirovich et al., in Photoelectrical Phenomena in Semiconductors and Optoelectronics, Collected vol. (FAN, Tashkent, 1972) [in Russian].

    Google Scholar 

  5. L. Pankove, Phys. Status Solidi A 61, 127 (1980).

    Article  ADS  Google Scholar 

  6. G. A. Nabiev, Semiconductors 43, 894 (2009).

    Article  ADS  Google Scholar 

  7. V. N. Agarev and N. A. Stepanova, Semiconductors 34, 438 (2000).

    Article  ADS  Google Scholar 

  8. K. M. Doshchanov, Sov. Phys. Semicond. 24, 788 (1990).

    Google Scholar 

  9. K. M. Doshchanov and V. D. Sokolov, Sov. Phys. Semicond. 24, 882 (1990).

    Google Scholar 

  10. H. Kallman, B. Kramer, E. Haidemenakis, W. I. McAller, H. Barkemayer, and P. E. Pollak, J. Electrochem. Soc. 108, 247 (1961).

    Article  Google Scholar 

  11. F. T. Novik, Sov. Phys. Solid State 4, 2440 (1962).

    Google Scholar 

  12. V. G. Schwabe. Z. Naturforsch. 10a, 78 (1955).

    ADS  Google Scholar 

  13. V. N. Ovsyuk, Sov. Phys. Semicond. 2, 992 (1968).

    Google Scholar 

  14. P. P. Konorov, K. Lyubitts, and I. Ortler, Uch. Zap. Len. Gos. Univ. 336, 98 (1968).

    Google Scholar 

  15. R. Ya. Berlaga, T. T. Bykova, et al., Uch. Zap. Len. Gos. Univ. 336, 92 (1968).

    Google Scholar 

  16. Sh. B. Atakulov, Solid State Commun. 51, 415 (1984).

    Article  ADS  Google Scholar 

  17. Sh. B. Atakulov, Sov. Phys. Semicond. 18, 1162 (1984).

    Google Scholar 

  18. L. N. Neustroev and V. V. Osipov, Sov. Phys. Semicond. 20, 34 (1986); Sov. Phys. Semicond. 20, 38 (1986).

    Google Scholar 

  19. L. Kazmerski, in Polycrystalline and Amorphous Thin Films and Devices, Materials Science and Technology Series (Academic Press, New York, 1980; Mir, Moscow, 1983).

    Google Scholar 

  20. Sh. B. Atakulov and I. M. Kokanbaev, Thermal and Radiation-Induced Processes in Polycrystalline Films of Lead Chalcogenides (FAN, Tashkent, 1992) [in Russian].

    Google Scholar 

  21. E. Z. Meilikhov, Phys. Usp. 36, 129 (1993).

    Article  ADS  Google Scholar 

  22. A. N. Orlov, in Atomic Structure of Intergrain Boundaries (Mir, Moscow, 1978), p. 5 [in Russian].

    Google Scholar 

  23. E. F. Pocza, Acta Phys. Acad. Sci. Hung. 15, 89 (1968).

    Article  Google Scholar 

  24. Ya. E. Geguzin, Outline of Diffusion in Crystals (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  25. D. S. Campbell, in Handbook of Thin Film Technology, Ed. by L. Maissel and R. Glang (McGraw-Hill, New York, 1970; Radio, Moscow, 1977).

    Google Scholar 

  26. V. A. Pogrebnyak, V. M. Yakovenko, and I. V. Yakovenko, Phys. Solid State 39, 1765 (1995).

    Google Scholar 

  27. N. K. Borodkina and L. P. Strakhov, Sov. Phys. Solid State 8, 1803 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nabiev.

Additional information

Original Russian Text © Sh.B. Atakulov, S.M. Zainolobidinova, G.A. Nabiev, O.A. Tukhtamatov, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 6, pp. 728–733.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atakulov, S.B., Zainolobidinova, S.M., Nabiev, G.A. et al. Effect of the structural features of polycrystalline semiconductor films on the formation of anomalous photovoltage: I. Phenomenon mechanism. Semiconductors 46, 708–713 (2012). https://doi.org/10.1134/S1063782612060036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612060036

Keywords

Navigation