Skip to main content
Log in

Exciton photoluminescence and energy in a percolation cluster of ZnSe quantum dots as a fractal object

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studies of samples containing ZnSe quantum dots with a density corresponding to or considerably higher than the exciton percolation threshold, at which quantum dots form conglomerates, are reported. Excitonic emission from a percolation cluster of bound quantum dots as a fractal object is observed for the first time. Analysis of the structure of the photoluminescence spectra shows that the spectra are determined by the contribution of exciton states that belong to different structural elements of the percolation cluster, specifically, to the skeleton (backbone), dangling (dead) ends, and internal hollow spaces. A qualitative model is proposed to interpret the dependence of the exciton energy in these structural elements on the concentration of quantum dots in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Deepa, M. T. Sebastian, and J. James, Appl. Phys. Lett. 91, 202904 (2007).

    Article  ADS  Google Scholar 

  2. K. S. Deepa, S. Kumari Nisha, P. Parameswaran, M. T. Sebastian, and J. James, Appl. Phys. Lett. 94, 142902 (2009).

    Article  ADS  Google Scholar 

  3. J. I. Hong, L. S. Schadler, and R. W. Siegel, Appl. Phys. Lett. 82, 1956 (2003).

    Article  ADS  Google Scholar 

  4. Q. Q. Yang and J. Z. Liang, Appl. Phys. Lett. 93, 131918 (2008).

    Article  ADS  Google Scholar 

  5. Jing Li and Jang-Kyo Kim, Compos. Sci. Technol. 67, 2114 (2007).

    Article  Google Scholar 

  6. N. Johner, C. Grimaldi, I. Balberg, and P. Ryser, Phys. Rev. B 77, 174204 (2008).

    Article  ADS  Google Scholar 

  7. V. Blavatska and W. Janke, Phys. Rev. Lett. 101, 135701 (2008).

    Article  ADS  Google Scholar 

  8. I. M. Sokolov, Sov. Phys. Usp. 29, 924 (1986).

    Article  ADS  Google Scholar 

  9. I. Balberg, J. Phys. D 42, 064003 (2009).

    Article  ADS  Google Scholar 

  10. I. Balberg, E. Savir, J. Jedrzejewski, A. G. Nassiopou- lou, and S. Gardelis, Phys. Rev. B 75, 235329 (2007).

    Article  ADS  Google Scholar 

  11. I. Balberg, E. Savir, and J. Jedrzejewski, J. Non-Cryst. Sol. 338–340, 102 (2004).

    Article  Google Scholar 

  12. D. ben-Avraham and Sh. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge Univ. Press, Cambridge, 2000); B. Nigro, G. Ambrosetti, C. Grimaldi, T. Maeder, and P. Ryser, Phys. Rev. B 83, 064203 (2011).

    Book  MATH  Google Scholar 

  13. N. V. Bondar and M. S. Brodyn, Physica E 42, 1549 (2010).

    Article  ADS  Google Scholar 

  14. N. V. Bondar and M. S. Brodyn, Semiconductors 44, 884 (2010).

    Article  ADS  Google Scholar 

  15. N. V. Bondar, J. Low Temp. Phys. 35, 232 (2009).

    Article  Google Scholar 

  16. V. A. Fonoberov, K. A. Alim, and A. A. Balandin, Phys. Rev. B 73, 165317 (2006).

    Article  ADS  Google Scholar 

  17. B. V. Perepelitsa, Sov. Phys. Semicond. 3, 1107 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bondar.

Additional information

Original Russian Text © N.V. Bondar, M.S. Brodyn, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 5, pp. 644–648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondar, N.V., Brodyn, M.S. Exciton photoluminescence and energy in a percolation cluster of ZnSe quantum dots as a fractal object. Semiconductors 46, 625–630 (2012). https://doi.org/10.1134/S1063782612050090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612050090

Keywords

Navigation