Skip to main content
Log in

Modelling and simulation of saturation region in double gate graphene nanoribbon transistors

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Novel analytical models for surface field distribution and saturation region length for double gate graphene nanoribbon transistors are proposed. The solutions for surface potential and electric field are derived based on Poisson equation. Using the proposed models, the effects of several parameters such as drain-source voltage, oxide thickness and channel length on the length of saturation region and electric field near the drain are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Liang, N. Neophytou, et al., J. Comput. Electron. 7, 394 (2008).

    Article  Google Scholar 

  2. M. C. Lemme, T. J. Echtermeyer, et al., IEEE Trans. Electron. Dev. Lett. 28, 282 (2007).

    Article  ADS  Google Scholar 

  3. M. Ahmadi, Z. Johari, et al., J. Nanomaterials 2010, 1 (2010).

    Article  Google Scholar 

  4. M. Cheli, P. Michetti, and G. Iannaccone, IEEE Trans. Electron. Dev. 57, 1939 (2010).

    Article  ADS  Google Scholar 

  5. K. Navi, M. Raswhtian, et al., Nanoscale Res. Lett. 5, 859 (2010).

    Article  ADS  Google Scholar 

  6. R. Sordan, F. Traversi, and V. Russo, Appl. Phys. Lett. 94, 1 (2009).

    Article  Google Scholar 

  7. A. Schutz, S. Selberherr, and H. W. Pötzl, Solid-State Electron. 25, 177 (1982).

    Article  ADS  Google Scholar 

  8. H. Wong, IEEE Trans. Electron. Dev. 42, 2197 (1995).

    Article  ADS  Google Scholar 

  9. N. D. Arora and M. S. Sharma, IEEE Trans. Electron. Dev. 38, 1392 (1991).

    Article  ADS  Google Scholar 

  10. F. F. Fang and A. B. Fowler, J. Appl. Phys. 41, 1825 (1970).

    Article  ADS  Google Scholar 

  11. D. Frohman-Bentchkowsky and A. S. Grove, IEEE Trans. Electron. Dev. 16, 108 (1969).

    Article  Google Scholar 

  12. G. Baum and H. Beneking, IEEE Trans. Electron. Dev. 17, 481 (1970).

    Article  Google Scholar 

  13. G. Gildenblat, L. Xin, et al., IEEE Trans. Electron. Dev. 53, 1979 (2006).

    Article  ADS  Google Scholar 

  14. H. Wong and M. C. Poon, IEEE Trans. Electron. Dev. 44, 2033 (1997).

    Article  ADS  Google Scholar 

  15. I. Meric, M. Y. Han, et al., Nature Nanotechnol. 3, 654 (2008).

    Article  ADS  Google Scholar 

  16. H. Wong, Microelectron. Reliab. 40, 3 (2000).

    Article  Google Scholar 

  17. Q. Zhang, T. Fang, et al., IEEE Electron. Dev. Lett. 29, 1344 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. El Banna and M. El Nokali, Solid-State Electron. 31, 269 (1988).

    Article  ADS  Google Scholar 

  19. D. Krizaj, G. Charitat, and S. Amon, Solid-State Electron. 39, 1353 (1996).

    Article  ADS  Google Scholar 

  20. J. S. Kolhatkar and A. K. Dutta, IEEE Trans. Electron. Dev. 47, 861 (2000).

    Article  ADS  Google Scholar 

  21. A. K. Singh, Microelectron. Int. 22, 16 (2005).

    Article  Google Scholar 

  22. W. Yang, X. Cheng, et al., Solid-State Electron. 49, 43 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdiar H. Ghadiry.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghadiry, M.H., Nadi, M., Rahmani, M. et al. Modelling and simulation of saturation region in double gate graphene nanoribbon transistors. Semiconductors 46, 126–129 (2012). https://doi.org/10.1134/S1063782612010101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612010101

Keywords

Navigation