Skip to main content
Log in

Vibronic states in organic semiconductors based on non-metal naphthalocyanine. Detection of heterocyclic phthalocyanine compounds in a flexible dielectric matrix

  • Amorphous, Vitreous, and Organic Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The vibronic properties of semiconductor structures based on non-metal naphthalocyanine molecules are studied using IR and Raman spectroscopy methods. New absorption lines in the transmission spectra of such materials are detected and identified. Three transmission lines are observed in the range 2830—3028 cm−1, which characterize carbon-hydrogen bonds of peripheral molecular groups. Their spectral positions are 2959, 2906, and 2866 cm−1. It is detected that the phthalocyanine ring can also exhibit its specific vibronic properties in the Raman spectra at 767, 717, and 679 cm−1. The naphthalocyanine molecule in the organic dielectric matrix of microfibers is described using IR spectroscopy. It is shown that the set of vibrations characterizing the isoindol group, pyrrole ring, naphtha group, and C-H bonds, allows an accurate enough description of the vibronic states of the naphthalocyanine complex in complex heterostructures to be made. The spectral range with fundamental modes, characterizing a naphthalocyanine semiconductor in a heterostructure, is 600–1600 cm−1. A comparison of the compositions of complex systems with a similar heterostructure containing lutetium diphthalocyanine demonstrated few errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Donaldson, Mater. Today 13, 8 (2010).

    Google Scholar 

  2. L. Donaldson, Mater. Today 13, 9 (2010).

    Google Scholar 

  3. J. Agbenyega, Mater. Today 13, 13 (2010).

    Google Scholar 

  4. Ch. Pool and F. Owens, Nanotechnologies (Tekhnosfera, Moscow, 2006; Wiley, Hoboken, NJ, 2003).

    Google Scholar 

  5. J. Agbenyega, Mater. Today 13, 10b (2010).

    Google Scholar 

  6. Yu. Al’tman, Military Nanotechnologies: Potential Applications and Preventive Arms Control (Tekhnosfera, Moscow, 2008) [in Russian].

    Google Scholar 

  7. J. Paterson, M. M. Martino, and J. A. Hubbell, Mater. Today 13, 14 (2010).

    Article  Google Scholar 

  8. L. Donaldson, Mater. Today 13, 10 (2010).

    Google Scholar 

  9. D. D. Diaz, H. J. Bolink, L. Cappelli, C. G. Claessens, E. Coronado, and T. Torres, Tetrahedron Lett. 18, 4657 (2007).

    Article  Google Scholar 

  10. N. B. McKeown, Phthalocyanine Materials. Synthesis, Structure and Function (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  11. L. Cao, H.-Z. Chen, H.-B. Zhou, L. Zhu, J.-Z. Sun, X.-B. Zhang, J.-M. Xu, and M. Wang, Adv. Mater. 15, 909 (2003).

    Article  Google Scholar 

  12. W. Feng, Y. Li, Y. Feng, and J. Wu, Nanotechnology 17, 3274 (2006).

    Article  ADS  Google Scholar 

  13. P. A. Firey, W. E. Michael, and A. J. Rodgers, J. Am. Chem. Soc. 110, 7626 (1988).

    Article  Google Scholar 

  14. S. Hayashida and N. Hayashi, Chem. Mater. 3, 92 (1991).

    Article  Google Scholar 

  15. R. T. Kuznetsova, N. S. Savenkova, G. V. Maier, S. M. Arabei, T. A. Pavich, and K. N. Solov’ev, J. Appl. Spectrosc. 74, 485 (2007).

    Article  ADS  Google Scholar 

  16. I. A. Belogorokhov, M. N. Martyshov, D. A. Mamichev, M. A. Dronov, V. E. Pushkarev, Yu. V. Ryabchikov, P. A. Forsh, L. G. Tomilova, and D. R. Khokhlov, Semiconductors 44, 766 (2010).

    Article  ADS  Google Scholar 

  17. I. A. Belogorokhov, E. V. Tikhonov, M. O. Breusova, V. E. Pushkarev, L. G. Tomilova, and D. R. Khokhlov, Semiconductors 41, 1204 (2007).

    Article  ADS  Google Scholar 

  18. A. V. Ziminov, S. M. Ramsh, E. I. Terukov, I. N. Trapeznikova, V. V. Shamanin, and T. A. Yurre, Semiconductors 40, 1131 (2006).

    Article  ADS  Google Scholar 

  19. F. Lu, Q. Cui, and X. Yan, Spectrochim. Acta A 65, 221 (2006).

    Article  ADS  Google Scholar 

  20. M. Bao, R. Wang, L. Rintoul, D. P. Arnold, and J. Jiang, Vibrat. Spectrosc. 40, 47 (2006).

    Article  Google Scholar 

  21. X. Sun, L. Rintoul, Y. Bian, D. P. Arnold, R. Wang, and J. Jiang, J. Raman. Spectrosc. 34, 306 (2003).

    Article  ADS  Google Scholar 

  22. F. Lu, L. Rintoul, X. Sun, D. P. Arnold, X. Zhang, and J. Jiang, J. Raman. Spectrosc. 35, 860 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Belogorokhov.

Additional information

Original Russian Text © I.A. Belogorokhov, E.V. Tikhonov, M.A. Dronov, L.I. Belogorokhova, Yu.V. Ryabchikov, L.G. Tomilova, D.R. Khokhlov, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 1, pp. 103–108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belogorokhov, I.A., Tikhonov, E.V., Dronov, M.A. et al. Vibronic states in organic semiconductors based on non-metal naphthalocyanine. Detection of heterocyclic phthalocyanine compounds in a flexible dielectric matrix. Semiconductors 46, 99–104 (2012). https://doi.org/10.1134/S1063782612010046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612010046

Keywords

Navigation