Skip to main content
Log in

The de Haas-van Alphen effect in nanostructures of cadmium fluoride

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Measurements of the field and temperature dependences of static magnetic susceptibility demonstrate de Haas-van Alphen oscillations at high temperatures and low magnetic fields in sandwich nanostructures, which are represented by an ultranarrow p-type CdF2 quantum well confined by δ barriers heavily doped with boron on the surface of an n-type CdF2 crystal. The temperature dependences of the de Haasvan Alphen oscillation amplitudes indicate a small value of the effective mass of two-dimensional holes, as a result of which, the strong field assumption, μB ≫ 1, is fulfilled at high temperatures. It is for the first time that a periodic variation in the de Haas-van Alphen oscillation frequency is detected and is accompanied by a diamagnetic response as temperature is increased. This phenomenon manifests itself as synchronous temperature oscillations of the density and effective mass of two-dimensional holes as a result of the mesoscopic properties of δ barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, Zs. Phys. 64, 629 (1930).

    Article  ADS  Google Scholar 

  2. L. Schubnikov and W. J. de Haas, Leiden Commun. N207a, 17 (1930), Leiden Commun. N210a, 3 (1930); Leiden Commun. N210b, 21 (1930).

    Google Scholar 

  3. L. Schubnikov and W. J. de Haas, Nature 126, 500 (1930).

    Article  ADS  Google Scholar 

  4. W. J. de Haas and P. M. van Alphen, Leiden Commun. N108d; Leiden Commun. 212a (1930); Leiden Commun. N220d (1932).

  5. A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Phys. Rev. Lett. 16, 901 (1966).

    Article  ADS  Google Scholar 

  6. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  7. D. Shoenberg, Nature 164, 225 (1949).

    Article  ADS  Google Scholar 

  8. I. M. Lifshits and A. M. Kosevich, Sov. Phys. JETP 29, 636 (1955).

    Google Scholar 

  9. V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002).

    Article  ADS  Google Scholar 

  10. G. Landwehr, J. Gerschütz, S. Oehling, A. Pfeuffer-Jeschke, V. Latussek, and C. R. Backer, Physica E 6, 713 (2000).

    Article  ADS  Google Scholar 

  11. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  12. V. P. Mineev and M. G. Vavilov, Phys. Usp. 167, 1069 (1997).

    Article  Google Scholar 

  13. Yu. A. Bychkov, Sov. Phys. JETP 39, 971 (1961).

    Google Scholar 

  14. L. Thompson and P. C. F. Stamp, Phys. Rev. B 81, 100514(R) (2010).

    ADS  Google Scholar 

  15. A. Audourd, C. Jaudet, D. Vignolles, R. X. Liang, D. A. Bonn, W. N. Hardy, L. Taillefer, and C. Proust, Phys. Rev. Lett. 103, 157003 (2009).

    Article  ADS  Google Scholar 

  16. N. T. Bagraev, O. N. Gimbitskaya, L. E. Klyachkin, A. M. Malyarenko, I. A. Shelykh, A. I. Ryskin, and A. S. Shcheulin, Semiconductors 43, 75 (2009).

    Article  ADS  Google Scholar 

  17. N. T. Bagraev, O. N. Gimbitskaya, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, V. V. Romanov, A. I. Ryskin, and A. S. Shcheulin, Semiconductors 43, 78 (2009).

    Article  ADS  Google Scholar 

  18. N. T. Bagraev, O. N, Gimbitskaya, L. E. Klyachkin, A. A. Kudryavtsev, A. M, Malyarenko, V. V. Romanov, A. I. Ryskin, and A. S. Shcheulin, Semiconductors 44, 1328 (2010).

    Article  ADS  Google Scholar 

  19. N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).

    Article  ADS  Google Scholar 

  20. C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).

    Article  ADS  Google Scholar 

  21. D. Y. Vodolazov, D. S. Golubovic, F. M. Peeters, and V. V. Moshchalkov, Phys. Rev. B 76, 134505 (2007).

    Article  ADS  Google Scholar 

  22. C. C. de Souza Silva, J. van de Vondel, M. Morelle, and V. V. Moshchalkov, Nature 440, 651 (2006).

    Article  ADS  Google Scholar 

  23. G. G. Zegrya, Semiconductors 33, 1043 (1999).

    Article  ADS  Google Scholar 

  24. A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, F. M. Peeters, and P. S. Deo, Physica B 249–251, 445 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Additional information

Original Russian Text © N.T. Bagraev, E.S. Brilinskaya, E.Yu. Danilovskii, L.E. Klyachkin, A.M. Malyarenko, V.V. Romanov, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 1, pp. 90–95.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagraev, N.T., Brilinskaya, E.S., Danilovskii, E.Y. et al. The de Haas-van Alphen effect in nanostructures of cadmium fluoride. Semiconductors 46, 87–92 (2012). https://doi.org/10.1134/S1063782612010022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612010022

Keywords

Navigation