Skip to main content
Log in

Optical properties of nanostructured lead sulfide films with a D03 cubic structure

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The optical transmittance of nanostructured cubic PbS (lead sulfide) films with a D03 structure is measured in the wavelength range 300 to 3200 nm. The film thicknesses are in the range ∼120 to ∼400 nm. Electron microscopy of the microstructure shows that about half of the films’ particles are 60 nm or smaller in size. As the average particle size is decreased, the band gap E g increases from 0.85 to 1.5 eV, being noticeably larger than the band gap of coarse-grained PbS, 0.41 eV. This is indicative of a blue shift of the optical absorption band in nanostructured PbS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Scanlon, J. Phys. Chem. Sol. 8, 423 (1959).

    Article  ADS  Google Scholar 

  2. R. B. Schoolar and J. R. Dixon, Phys. Rev. A 137, 667 (1965).

    ADS  Google Scholar 

  3. J. N. Zemmel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. A 140, 330 (1965).

    ADS  Google Scholar 

  4. A. A. Rempel, Usp. Khim. 76, 474 (2007).

    Google Scholar 

  5. Baolong Yu, Guosheng Yin, Congshan Zhu, and Fuxi Gan, Opt. Mater. 11, 17 (1998).

    Article  MATH  ADS  Google Scholar 

  6. Y. J. Yang, L. Y. He, and Q. F. Zhang, Electrochem. Commun. 7, 361 (2005).

    Article  Google Scholar 

  7. J. J. Peterson and T. D. Krauss, Nano Lett. 6, 510 (2006).

    Article  ADS  Google Scholar 

  8. S. B. Qadri, A. Singh, and M. Yousuf, Thin Solid Films 431–432, 506 (2003).

    Article  Google Scholar 

  9. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, JETP Lett. 89, 238 (2009).

    Article  ADS  Google Scholar 

  10. S. I. Sadovnikov and A. A. Rempel, Dokl. Phys. Chem. 428, 167 (2009).

    Article  Google Scholar 

  11. S. I. Sadovnikov and A. A. Rempel, Phys. Solid State 51, 2375 (2009).

    Article  ADS  Google Scholar 

  12. S. I. Sadovnikov, N. S. Kozhevnikova, and A. A. Rempel, Semiconductors 44, 1349 (2010).

    Article  ADS  Google Scholar 

  13. Y. Wang, A. Suna, W. Mahier, and R. Kasowski, J. Chem. Phys. 87, 7315 (1987).

    Article  ADS  Google Scholar 

  14. Ping Yang, Chun Feng Song, Meng Kai Lü, Xin Yin, Guang Jun Zhou, Dong Xu, and Duo Rong Yuan, Chem. Phys. Lett. 345, 429 (2001).

    Article  ADS  Google Scholar 

  15. A. Sashchiuk, E. Lifshitz, R. Reisfeld, T. Saraidarov, M. Zelner, and A. Willenz, J. Sol-Gel Sci. Techonol. 24, 31 (2002).

    Article  Google Scholar 

  16. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, Appl. Phys. Lett. 82, 2895 (2003).

    Article  ADS  Google Scholar 

  17. Yongbin Zhao, Jianhua Zou, and Wenfang Shi, Mater. Sci. Eng. B 121, 20 (2005).

    Article  Google Scholar 

  18. S. Jana, R. Thapa, R. Maity, and K. K. Chattopadhyay, Physica E 40, 3121 (2008).

    Article  ADS  Google Scholar 

  19. I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, Thin Solid Films 307, 240 (1997).

    Article  ADS  Google Scholar 

  20. S. M. Salim and O. Hamid, Renewable Energy 24, 575 (2001).

    Article  Google Scholar 

  21. J. Puiso, S. Tamulevicius, G. Laukaitis, S. Lindroos, M. Leskela, and V. Snitka, Thin Solid Films 403–404, 457 (2002).

    Article  Google Scholar 

  22. J. J. Valenzuel-Jaureguia, R. Ramirez-Bon, A. Mendoza-Galvan, and M. Sotelo-Lerma, Thin Solid Films 441, 104 (2003).

    Article  ADS  Google Scholar 

  23. R. W. Morton, D. E. Simon, J. J. Gislason, and S. Taylor, Adv. X-Ray Anal. 46, 80 (2003).

    Google Scholar 

  24. X’Pert Plus Version 1.0 Program for Crystallography and Rietveld Analysis, Philips Analytical B. V. Koniklijke Philips Electronics, N.V.

  25. W. H. Hall and G. K. Williamson, Proc. Phys. Soc. London, Sect. B 64(383), 937 (1951).

    Article  ADS  Google Scholar 

  26. S. I. Sadovnikov, N. S. Kozhevnikova, and A. A. Rempel, Glass Phys. Chem. 35, 60 (2009).

    Article  Google Scholar 

  27. N. S. Belova, A. A. Uritskaya, and G. A. Kitaev, Zh. Prikl. Khim. 75, 1598 (2002).

    Google Scholar 

  28. S. V. Anishchik and N. N. Medvedev, Phys. Rev. Lett. 75, 4314 (1995).

    Article  ADS  Google Scholar 

  29. J. I. Pankove, Optical Processes in Semiconductors, 2nd ed. (Dover, New York, 1975).

    Google Scholar 

  30. Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  31. C. F. Klingshirn, Semiconductor Optics (Springer, New York, 2005).

    Google Scholar 

  32. R. J. Elliot, Phys. Rev. 108, 1384 (1957).

    Article  ADS  Google Scholar 

  33. M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, and G. J. Zissis, Fundamental of Infrared Technology (MacMillan, New York, 1962).

    Google Scholar 

  34. D. M. Mittleman, R. W. Schoenlein, J. J. Shiang, V. L. Colvin, A. P. Alivisatos, and C. V. Shank, Phys. Rev. B 49, 14435 (1944).

    Article  ADS  Google Scholar 

  35. F. Mozer and F. Urbach, Phys. Rev. 102, 1519 (1956).

    Article  ADS  Google Scholar 

  36. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  37. L. E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  ADS  Google Scholar 

  38. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988).

    Article  ADS  Google Scholar 

  39. K. F. Cuff, M. R. Ellet, C. D. Kuglin, and L. R. Williams, in Proceedings of the 7th International Conference on Physics of Semiconductors (Dunod, Paris, 1964), p. 677.

    Google Scholar 

  40. Landolt-Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaftenund Technik—Neue Serie/Grouppe III: Kristall- und Festkorperphysik, Ed. by K.-H. Hellwege and O. Madelung (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983), Band 17 f, P. 155.

    Google Scholar 

  41. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2009), p. 166 [in Russian].

    Google Scholar 

  42. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int., Science Publ., Cambridge, 2004), p. 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Additional information

Original Russian Text © S.I. Sadovnikov, N.S. Kozhevnikova, A.I. Gusev, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 12, pp. 1621–1632.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadovnikov, S.I., Kozhevnikova, N.S. & Gusev, A.I. Optical properties of nanostructured lead sulfide films with a D03 cubic structure. Semiconductors 45, 1559–1570 (2011). https://doi.org/10.1134/S1063782611120116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611120116

Keywords

Navigation