Skip to main content
Log in

Specific Features and Nature of the 890 nm Photoluminescence Band Detected in SiO x Films after Low-Temperature Annealing

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A band with a peak at 890 nm is detected in the photoluminescence spectra of SiO x (x ≈ 1.3) films deposited by thermal evaporation of SiO and annealed in air at 650–1150°C. The 890-nm band appears after low-temperature (∼650°C) annealing and exhibits a number of features: (i) as the annealing temperature is elevated to 1150°C, the position of the band peak remains unchanged, whereas the intensity increases by two orders of magnitude; (ii) the effects of the annealing atmosphere (air, vacuum) and the excitation wavelength and power density on the intensity of the 890-nm band differ from the corresponding effects on the well-known bands observable in the ranges 600–650 and 700–800 nm; and (iii) the photoluminescence decay is first fast and then much slower, with corresponding lifetimes of ∼9 and ∼70 μs. The observed features are inconsistent with the interpretation of photoluminescence observed in SiO x so far. Specifically, the earlier observed photoluminescence was attributed to transitions between the band and defect states in the matrix and between the states of band tails, transitions inside Si nanoclusters, and intraion transitions in rare-earth impurity ions. Therefore, we consider here the possibility of attributing the 890-nm band to transitions in local centers formed by silicon ions twofold- and/or threefold-coordinated with oxygen; i.e., we attempt to interpret the 890-nm band in the same manner as was done for luminescence in SiO2 glasses and films slightly deficient in oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, Phys. Rev. B 48, 4883 (1993).

    Article  ADS  Google Scholar 

  2. M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998).

    Article  ADS  Google Scholar 

  3. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).

    Article  ADS  Google Scholar 

  4. U. Kahler and H. Hofmeister, Appl. Phys. 74, 13 (2002).

    Article  Google Scholar 

  5. M. Molinary and H. Hafmeister, Appl. Phys. Lett. 82, 3877 (2003).

    Article  ADS  Google Scholar 

  6. J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, Adv. Mater. 17, 795 (2005).

    Article  Google Scholar 

  7. G. Wora Adeola, H. Rinnert, P. Miska, and M. Vergnat, J. Appl. Phys. 102, 053515 (2007).

    Article  ADS  Google Scholar 

  8. I. N. Yassievich and A. S. Moskalenko, Mater. Sci. Eng. 105, 192 (2003).

    Article  Google Scholar 

  9. O. Savchyn, F. R. Ruhge, and P. G. Kik, Phys. Rev. B 76, 195419 (2007).

    Article  ADS  Google Scholar 

  10. B. N. Romanyuk, V. P. Mel’nik, V. G. Popov, I. M. Khatsevich, and A. S. Oberemok, Semiconductors 44, 514 (2010).

    Article  Google Scholar 

  11. N. A. Vlasenko, P. F. Olekseenko, Z. L. Denisov, N. V. Sopinskii, L. I. Veligura, E. G. Gule, O. S. Litvin, and M. A. Mukhl’o, Semiconductors 45, 587 (2011).

    Article  ADS  Google Scholar 

  12. A. Barranco, F. Yubero, J. P. Espinos, P. Groening, and A. R. Gonzales-Elipe, J. Appl. Phys. 97, 113714 (2005).

    Article  ADS  Google Scholar 

  13. R. Tohmon, Y. Shimogauchi, H. Mizuno, K. Nagasawa, and Y. Hama, Phys. Rev. Lett. 62, 1388 (1989).

    Article  ADS  Google Scholar 

  14. V. L. Alperovich, Yu. B. Bolkhovityanov, S. I. Chikichev, A. G. Paulish, A. S. Terekhov, and A. S. Yaroshevich, Semiconductors 35, 1054 (2001).

    Article  ADS  Google Scholar 

  15. L. Rebohle, J. von Borany, H. Frob, T. Gebel, M. Helm, and W. Skorupa, Nucl. Instrum. Methods Phys. Res. B 188, 28 (2002).

    Article  ADS  Google Scholar 

  16. M. M. G. Alemany and J. R. Chelikowsky, Phys. Rev. B 73, 235211 (2006).

    Article  ADS  Google Scholar 

  17. N. A. Vlasenko, N. V. Sopinskii, E. G. Gule, L. I. Veligura, V. Ya. Bratus’, R. S. Mel’nik, Z. L. Denisova, and M. A. Mukhl’o, Optoelektron. Poluprovodn. Tekh. 45, 76 (2010).

    Google Scholar 

  18. Y. Kanemitsu and Y. Fukunishi, Thin Sol. Films 393, 103 (2001).

    Article  ADS  Google Scholar 

  19. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 71, 1198 (1997).

    Article  ADS  Google Scholar 

  20. Y. Kanemitsu, Y. Fukunishi, and T. Kushida, Appl. Phys. Lett. 77, 1198 (1998).

    Google Scholar 

  21. A. Yanotta, M. Schmidt, R. Janssen, Ch. Buchal, and M. Stutzmann, J. Non-Cryst. Sol. 299–302, 688 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vlasenko.

Additional information

Original Russian Text © N.A. Vlasenko, N.V. Sopinskii, E.G. Gule, E.G. Manoilov, P.F. Oleksenko, L.I. Veligura, M.A. Mukhlyo, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 11, pp. 1470–1475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasenko, N.A., Sopinskii, N.V., Gule, E.G. et al. Specific Features and Nature of the 890 nm Photoluminescence Band Detected in SiO x Films after Low-Temperature Annealing. Semiconductors 45, 1414–1419 (2011). https://doi.org/10.1134/S1063782611110273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611110273

Keywords

Navigation