Skip to main content
Log in

Quantum-chemical study of adsorption of 2-propanol molecule on a GaAs (100) surface

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Quantum-chemical cluster calculations employing density functional theory are used to study the adsorption mechanism of 2-propanol molecules on a Ga-rich GaAs (100) surface. It is shown that 2-propanol molecules can be adsorbed either molecularly or dissociatively. Dissociation of 2-propanol molecules at the GaAs(100) surface can proceed with the rupture of an O-H or C-OH bond. The state with the rupture of the C-OH bond has the lowest energy among all possible adsorption states. However, for transition into this state, a very high barrier should be overcome, which is possible only at the semiconductor/liquid interface. The calculated adsorption path agrees well with the available experimental data on the interaction of 2-propanol with the GaAs (100) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Licht, J. Phys. Chem. B 105, 6281 (2001).

    Article  Google Scholar 

  2. W. Jaegermann, in Modern Aspects of Electrochemistry, Ed. by R. W. White (Plenum, New York, 1996), Vol. 30.

    Google Scholar 

  3. O. Henrion, T. Löher, A. Klein, C. Pettenkofer, and W. Jaegermann, Surf. Sci. 366, L685 (1996).

    Google Scholar 

  4. M. Beerbom, O. Henrion, A. Klein, T. Mayer, and W. Jaegermann, Electrochim. Acta 45, 4663 (2000).

    Article  Google Scholar 

  5. O. Henrion, A. Klein, and W. Jaegermann, Surf. Sci. 457, L337 (2000).

    Article  Google Scholar 

  6. C.-H. Chung, S. I. Yi, and W. H. Weinberg, J. Vac. Sci. Technol. A 16, 1785 (1998).

    Article  ADS  Google Scholar 

  7. N. Gayathri, S. Izvekov, and G. A. Voth, J. Chem. Phys. 117, 872 (2002).

    Article  ADS  Google Scholar 

  8. R. P. Vasquez, B. F. Lewis, and F. J. Grunthaner, J. Vac. Sci. Technol. B 1, 791 (1983).

    Article  Google Scholar 

  9. O. E. Tereshchenko, S. I. Chikichev, and A. S. Terekhov, J. Vac. Sci. Technol. A 17, 2655 (1999).

    Article  ADS  Google Scholar 

  10. Y. Jun, X.-Y. Zhu, and J. W. P. Hsu, Langmuir 22, 3627 (2006).

    Article  Google Scholar 

  11. O. E. Tereshchenko, D. Paget, P. Chiaradia, J. E. Bonnet, F. Wiame, and A. Taleb-Ibrahimi, Appl. Phys. Lett. 82, 4280 (2003).

    Article  ADS  Google Scholar 

  12. K. Akita, M. Taneya, Y. Sugimoto, and H. Hidaka, J. Electrochem. Soc. 137, 2081 (1990).

    Article  Google Scholar 

  13. V. L. Alperovich, O. E. Tereshchenko, N. S. Rudaya, D. V. Sheglov, A. V. Latyshev, and A. S. Terekhov, Appl. Surf. Sci. 235, 249 (2004).

    Article  ADS  Google Scholar 

  14. V. N. Bessolov, E. V. Konenkova, and M. V. Lebedev, J. Vac. Sci. Technol. B 14, 2761 (1996).

    Article  Google Scholar 

  15. M. Kemerink, J. W. Gerritsen, P. M. Koenraad, H. van Kempen, and J. H. Wolter, Appl. Phys. Lett. 75, 3656 (1999).

    Article  ADS  Google Scholar 

  16. M. V. Lebedev, Appl. Surf. Sci. 254, 8016 (2008).

    Article  ADS  Google Scholar 

  17. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 114, 21385 (2010).

    Article  Google Scholar 

  18. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 113, 20421 (2009).

    Article  Google Scholar 

  19. J. G. McLean, P. Kruse, G.-P. Jiang, H. E. Ruda, and A. C. Kummel, J. Phys. Chem. A 103, 10364 (1999).

    Article  Google Scholar 

  20. Q. Fu, L. Li, and R. F. Hicks, Phys. Rev. B 61, 11034 (2000).

    Article  ADS  Google Scholar 

  21. S. Tang and Z. Cao, J. Phys. Chem. A 113, 5685 (2009).

    Article  Google Scholar 

  22. J. Z. Sexton and A. C. Kummel, J. Vac. Sci. Technol. B 21, 1908 (2003).

    Article  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Rev. C.01 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  24. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

    Article  ADS  Google Scholar 

  25. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

    Article  ADS  Google Scholar 

  26. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, Clarendon, New York, Oxford, 1989).

    Google Scholar 

  27. M. V. Lebedev, Semiconductors 42, 1048 (2008).

    Article  ADS  Google Scholar 

  28. K.-I. Tanaka, Y. Nomoto, and Z.-X. Xie, J. Chem. Phys. 120, 4486 (2004).

    Article  ADS  Google Scholar 

  29. W. Zhou, Y. Yuan, and J. Zhang, J. Chem. Phys. 119, 7179 (2003).

    Article  ADS  Google Scholar 

  30. M. Bowker and R. J. Madix, Surf. Sci. 116, 549 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Additional information

Original Russian Text © M.V. Lebedev, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 11, pp. 1579–1583.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, M.V. Quantum-chemical study of adsorption of 2-propanol molecule on a GaAs (100) surface. Semiconductors 45, 1519–1523 (2011). https://doi.org/10.1134/S1063782611110170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611110170

Keywords

Navigation