Advertisement

Semiconductors

, 45:1006 | Cite as

Photoluminescence in silicon implanted with erbium ions at an elevated temperature

  • N. A. SobolevEmail author
  • A. E. Kalyadin
  • E. I. Shek
  • V. I. Sakharov
  • I. T. Serenkov
  • V. I. Vdovin
  • E. O. Parshin
  • M. I. Makoviichuk
Spectroscopy, Interaction with Radiation

Abstract

Photoluminescence spectra of n-type silicon upon implantation with erbium ions at 600°C and oxygen ions at room temperature and subsequent annealings at 1100°C in a chlorine-containing atmosphere have been studied. Depending on the annealing duration, photoluminescence spectra at 80 K are dominated by lines of the Er3+ ion or dislocation-related luminescence. The short-wavelength shift of the dislocation-related luminescence line observed at this temperature is due to implantation of erbium ions at an elevated temperature. At room temperature, lines of erbium and dislocation-related luminescence are observed in the spectra, but lines of near-band-edge luminescence predominate.

Keywords

Erbium Annealing Duration Band Edge Luminescence Dislocation Related Luminescence High Resolution Electron Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    N. A. Sobolev, Fiz. Tekh. Poluprovodn. 44, 3 (2010) [Semiconductors 44, 1 (2010)].MathSciNetGoogle Scholar
  3. 3.
    S. Coffa, G. Franzo, and F. Priolo, MRS Bull. 23, 25 (1998).Google Scholar
  4. 4.
    N. A. Sobolev, A. M. Emel’yanov, V. V. Zabrodskii, N. V. Zabrodskaya, V. L. Sukhanov, and E. I. Shek, Fiz. Tekh. Poluprovodn. 41, 635 (2007) [Semiconductors 41, 616 (2007)].Google Scholar
  5. 5.
    N. A. Sobolev, O. B. Gusev, E. I. Shek, V. I. Vdovin, T. G. Yugova, and A. M. Emel’yanov, Appl. Phys. Lett. 72, 3326 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Acad., Boston, 1995).Google Scholar
  7. 7.
    S. Takeda, Jpn. J. Appl. Phys. 30, L639 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    F. Priolo, S. Coffa, G. Franzo, C. Spinella, A. Camera, and B. Bellany, J. Appl. Phys. 74, 4936 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y.-H. Xie, J. M. Poate, and L. C. Kimerling, J. Appl. Phys. 70, 2672 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Sobolev, M. S. Bresler, O. B. Gusev, M. I. Mako- viichuk, E. O. Parshin, and E. I. Shek, Fiz. Tekh. Poluprovodn. 28, 1995 (1994) [Semiconductors 28, 1100 (1994)].Google Scholar
  11. 11.
    E. A. Shteinman, Fiz. Tverd. Tela 47, 9 (2005) [Phys. Solid State 47, 5 (2005)].Google Scholar
  12. 12.
    V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, and A. Izotov, Phys. Status Solidi A 202, 901 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    E. O. Sveinbjornsson and J. Weber, Appl. Phys. Lett. 69, 2686 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. A. Sobolev
    • 1
    Email author
  • A. E. Kalyadin
    • 1
  • E. I. Shek
    • 1
  • V. I. Sakharov
    • 1
  • I. T. Serenkov
    • 1
  • V. I. Vdovin
    • 2
  • E. O. Parshin
    • 3
  • M. I. Makoviichuk
    • 3
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Fock Research Institute of PhysicsSt. Petersburg UniversitySt. PetersburgRussia
  3. 3.Yaroslavl Branch, Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia

Personalised recommendations